Skip to main content

Derivation of Functional Dopamine Neurons From Embryonic Stem Cells

The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.

Parkinson's disease (PD) is a neurodegenerative disorder characterized by the selective degeneration of dopaminergic (DA) neurons in the substantia nigra of the midbrain. Pharmacological treatment of PD has been a prevailing strategy. However, it has some limitations because its effectiveness gradually decreases and side effects develop. As an alternative, cell transplantation therapy has been tried. Although transplantation of fetal ventral mesencephalic cells looks promising for the treatment of PD in some cases, ethical and technical problems in obtaining large numbers of human fetal brain tissues also lead to difficulty in its clinical application. Our recent studies showed that a high yield of DA neurons could be derived from embryonic stem (ES) cells and they efficiently induced behavioral recovery in a PD animal model. Here we summarize methods for generation of functional DA neurons from ES cells for application to PD models.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Keywords: Dopamine neurons; Embryonic stem cells; Parkinson's disease

Document Type: Research Article

Affiliations: 1: Department of Physiology, Yonsei University College of Medicine, Seoul, Korea, Brain Korea 21 project for Medical Science, Yonsei University College of Medicine, Seoul, Korea 2: Department of Physiology, Yonsei University College of Medicine, Seoul, Korea 3: R&D Center, Jeil Pharmaceutical Co., Ltd., Korea

Publication date: 2007-02-01

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.

    Cell Transplantation is now being published by SAGE. Please visit their website for the most recent issues.

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more