Skip to main content

Functional and Phenotypic Alteration of Intrasplenic Lymphocytes Affected by Mesenchymal Stem Cells in a Murine Allosplenocyte Transfusion Model

The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.

Previous data have demonstrated that mesenchymal stem cells (MSCs) can exert immunomodulatory activity in vitro, in which of the process nearly all kinds of immune cell subsets are involved. However, there is still a paucity of information about whether and why MSCs inhibit the ongoing immune responses in vivo. Working in a murine splenocyte transfusion model across the major histocompatibility barrier (C57BL/6 → BALB/c, H2b → H2d), we have found that MSC coinfusion prolongs the mean survival time (MST) of the recipient mice in a dose-dependent manner and reduces graft-versus-host-associated histopathology in comparison to the allosplenocyte transfusion controls. In vivo eGFP tracing with polymerase chain reaction analysis revealed that grafted MSCs could migrate and settle into the lungs, spleen, liver, intestine, and skin shortly after administration. Further investigations into the functional characteristics of intrasplenic lymphocytes showed that their proliferation and cytotoxic activity against P815 cells (H2d) were significantly restrained by MSC cotransfer. FACS analysis demonstrated that MSC infusion not only increased the proportion of CD4+ subset but also decreased that of CD8+ cells at the belated observation points, resulting in the increase of the ratio of CD4+/CD8+ cells. Also, in contrast to the slight increase of the proportion of CD4+CD25+ T regulatory cells (Tregs) in MSC cotransfer mice, the ratio of Tregs/CD8+ cells was dramatically elevated. Furthermore, RT-PCR analysis on the cytokine array of IL-2, IL-4, IL-12, TNF-α, and TGF- in recipient splenocytes implied the Th1 to Th2 polarization. Therefore, it is deducible that alteration in the proportions of different T-lymphocyte subsets may be one of the main mechanisms by which grafted MSCs suppress the ongoing immune responses in vivo. The study here might provide some new clues for the design of therapeutic approaches for MSC transplantation.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: Immunomodulation; In vivo; Lymphocyte subsets; Mesenchymal stem cells; Murine model

Document Type: Research Article

Affiliations: 1: Department of Cell Biology, Beijing Institute of Basic Medical Sciences, Beijing 100850, China 2: Department of Cell Biology, Beijing Institute of Basic Medical Sciences, Beijing 00850, China

Publication date: 2007-01-01

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.

    Cell Transplantation is now being published by SAGE. Please visit their website for the most recent issues.

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more