Skip to main content

Protein Transduction: A Novel Approach to Induce In Vitro Pancreatic Differentiation

Buy Article:

$79.00 plus tax (Refund Policy)

Abstract:

It is widely believed that human embryonic stem (huES) cells may represent a valid alternative to donor pancreata as a source of islets for transplantation. Much is known about the transcription factors whose sequential activation results in the generation of islets during pancreatic development. This knowledge has been used to articulate the theoretical possibility that such process might be recapitulated in vitro from stem cells. However, our understanding of the extracellular signals that prompt the developing pancreas to follow this sequence of molecular events is very limited. Also, the simplicity of in vitro systems makes it difficult, if not impossible, to mimic the complex signaling pattern observed in living embryos. Protein transduction (PT) technology may provide researchers with a new powerful tool to sequentially induce stem cell differentiation, entirely bypassing the need for unraveling the signaling pattern that drives the process in vivo. Here we discuss this novel application of the flourishing PT technology, which may revolutionize the way we direct stem cells along any specific lineage.

Keywords: In vitro differentiation; Islet transplantation; Protein transduction; Stem cells

Document Type: Research Article

DOI: http://dx.doi.org/10.3727/000000006783982359

Affiliations: Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA

Publication date: March 1, 2006

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.
cog/ct/2006/00000015/A00101s1/art00012
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more