Skip to main content

Protein Transduction: A Novel Approach to Induce In Vitro Pancreatic Differentiation

The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.

It is widely believed that human embryonic stem (huES) cells may represent a valid alternative to donor pancreata as a source of islets for transplantation. Much is known about the transcription factors whose sequential activation results in the generation of islets during pancreatic development. This knowledge has been used to articulate the theoretical possibility that such process might be recapitulated in vitro from stem cells. However, our understanding of the extracellular signals that prompt the developing pancreas to follow this sequence of molecular events is very limited. Also, the simplicity of in vitro systems makes it difficult, if not impossible, to mimic the complex signaling pattern observed in living embryos. Protein transduction (PT) technology may provide researchers with a new powerful tool to sequentially induce stem cell differentiation, entirely bypassing the need for unraveling the signaling pattern that drives the process in vivo. Here we discuss this novel application of the flourishing PT technology, which may revolutionize the way we direct stem cells along any specific lineage.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: In vitro differentiation; Islet transplantation; Protein transduction; Stem cells

Document Type: Research Article

Affiliations: Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA

Publication date: 2006-03-01

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.

    Cell Transplantation is now being published by SAGE. Please visit their website for the most recent issues.

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more