Skip to main content

Self-Assembling Peptide Nanofiber as a Novel Culture System for Isolated Porcine Hepatocytes

Buy Article:

$79.00 plus tax (Refund Policy)

Abstract:

Freshly isolated porcine hepatocytes are a very attractive cell source in the cell-based therapies to treat liver failure because of unlimited availability. However, due to the loss of hepatocyte functions in vitro, there is a need to develop a functional culture system to keep the cells metabolically active. Here we compared the effect of a self-assembling peptide nanofiber (SAPNF) as an extracellular matrix (ECM) with collagen type I on hepatocyte metabolic and secretion activities following hepatocyte isolation. Isolated porcine hepatocytes were cultured in SAPNF and collagen type I. Morphological assessment at different time points was performed by using SEM and phase contrast microscope. Metabolic and secretion activities were comparatively performed in the groups, by means of ammonia, lidocaine, and diazepam as well as albumin. Hepatocytes cultured on SAPNF revealed a three-dimensional spheroidal formation, thus maintaining cell differentiation status during 2 weeks of culture. On the other hand, hepatocytes in collagen revealed a spread shape, and by day 14 no hepatocyte-like cells were observed, but cells with long shape were present, thus revealing a degree of dedifferentiation in collagen culture. Hepatocytes in SAPNF were capable of drug-metabolizing activities and albumin secretion in higher ratio than those cultured on collagen. The present work clearly demonstrates the usefulness of SAPNF for maintaining differentiated functions of porcine hepatocytes in culture.

Keywords: Extracellular matrix; Hepatocyte culture; Porcine hepatocytes; Self-assembling peptide nanofiber

Document Type: Research Article

DOI: http://dx.doi.org/10.3727/000000006783981387

Affiliations: 1: Department of Surgery, Okayama University Graduate School of Medicine and Dentistry, Okayama 700-8558, Japan 2: Department of Orthopedic Surgery, Okayama University Graduate School of Medicine and Dentistry, Okayama 700-8558, Japan 3: 3-DMatrix Japan, Ltd., Tokyo 102-0083, Japan

Publication date: October 1, 2006

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.
cog/ct/2006/00000015/00000010/art00011
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more