Use of Repeating Dispensers to Increase the Efficiency of the Intramuscular Myogenic Cell Injection Procedure

$79.00 plus tax (Refund Policy)

Buy Article:

Abstract:

Intramuscular myoblast transplantation in humans and nonhuman primates requires precise repetitive cell injections very close to each other. Performed with syringes operated manually throughout large regions, this procedure takes a lot of time, becoming tiring and thus imprecise. We tested two repetitive dispensers with Hamilton syringes as cell injection devices to facilitate this procedure. Monkeys received intramuscular allotransplantations of -galactosidase-labeled myoblasts, using either a monosyringe or a multisyringe repeating dispenser. The monosyringe repeating dispenser allowed performing cell injections faster and easier than with a manually operated syringe. The multisyringe dispenser accelerated the procedure still more, but it was not ergonomic. Biopsies of the myoblast-injected sites 1 month later showed abundant -galactosidase-positive myofibers, with the same density and morphological pattern observed following myoblast transplantation with a syringe operated manually. We recommend the monosyringe repeating dispenser for myoblast transplantation in skeletal muscles and maybe in the heart.

Keywords: Cell delivery; Muscle precursor cell; Repeating dispensers; Skeletal muscle

Document Type: Research Article

DOI: http://dx.doi.org/10.3727/000000006783981648

Affiliations: Unité de recherche en Génétique humaine, Centre Hospitalier de l'Université Laval, Québec, QC, Canada G1V 4G2

Publication date: July 1, 2006

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more