Skip to main content

In Vitro Culture Duration Does Not Impact the Ability of Encapsulated Choroid Plexus Transplants to Prevent Neurological Deficits in an Excitotoxin-Lesioned Rat Model of Huntington's Disease

The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.

Delivery of neurotrophic molecules to the CNS is a potential treatment strategy for preventing the neuronal loss accompanying many neurological disorders. Choroid plexus (CP) epithelial cells secrete a cocktail of neurotrophic factors, and encapsulated CP transplants are neuroprotective in animal models of stroke and Huntington's disease (HD). Prior to clinical use, it is essential to identify and optimize parameters such as the length of time that transplant products such as encapsulated CP can be maintained. In the present study, neonatal porcine CP was encapsulated within alginate microcapsules and maintained in vitro for 1, 2, or 7 months. The encapsulated cells remained viable (>80%) at all time points and were transplanted unilaterally into the rat striatum. Seven days later, the same animals received unilateral injections of quinolinic acid (QA; 225 nmol) adjacent to the implant site. Separate groups of animals served as controls and received QA alone. After surgery, animals were periodically evaluated for weight loss and were tested for motor function 14 days post-QA. In controls, QA lesions produced a significant loss of body weight and impaired function of the contralateral forelimb. In contrast, implants of CP were potently neuroprotective as rats receiving CP transplants did not lose body weight and were not significantly impaired when tested for motor function. These benefits were independent of the length of time that the cells were held in vitro and demonstrate that the potential potency of alginate encapsulated CP cells can be retained for extremely long periods of time in vitro.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: Choroid plexus; Encapsulation; Huntington's disease; Xenotransplant

Document Type: Research Article

Affiliations: LCT BioPharma, Inc., Providence, RI, USA

Publication date: 2006-07-01

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.

    Cell Transplantation is now being published by SAGE. Please visit their website for the most recent issues.

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more