Skip to main content

Isolated Pancreatic Islets in Three-Dimensional Matrices Are Responsive to Stimulators and Inhibitors of Angiogenesis

The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.


The formation of a new microvasculature is essential for the long-term survival and function of the islet graft. In this study we examined endothelium of isolated pancreatic islets by stimulation with growth factors, different culture conditions, and genetic modification. We also inspected the effect of immunosuppressives used in human transplantation on angiogenesis. Isolated islets were embedded in a three-dimensional fibrin or Matrigel matrix. The effect of hyperglycemia, hypoxia, and the addition of VEGF and bFGF was investigated. We exposed islets from transgenic mice expressing the VEGF gene (RIP1VEGF-A) to high glucose (16.7 mmol/L) medium and tested the immunosuppressive agents rapamycin (100 ng/ml) and FK506 (100 ng/ml). To quantify angiogenesis the percentage of sprouting islets was determined. New endothelial capillary-like structures protruded from isolated pancreatic islets. Addition of VEGF to the islets and transgenic RIP-VEGF islets showed a two- to threefold increase of sprouting islets compared to control. Hypoxic culture conditions stimulated angiogenesis, resulting in a twofold increase of capillary sprouting. Rapamycin and FK506 proved to be potent inhibitors of angiogenesis in this system, because a decrease of sprouting islets of more than 20% by both agents was observed. Isolated pancreatic islets are capable of forming new capillary structures and are susceptible to pro- and antiangiogenic stimuli.

Keywords: Angiogenesis; FK506; Fibrin matrix; Islet transplantation; Rapamycin; Rip1VEGF-A; VEGF

Document Type: Research Article


Affiliations: 1: Medical Clinic and Policlinic 3, Justus Liebig University, Rodthohl 6, 35392 Giessen, Germany 2: Department of Biochemistry, Justus Liebig University, Friedrichstrasse 24, 35392 Giessen, Germany 3: Department of Pathology, Medical Faculty Carl Gustav Carus, University of Technology Dresden, Fetscherstrasse 74, 01307 Dresden, Germany

Publication date: 2006-06-01

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more