Skip to main content

CNS Gene Therapy and a Nexus of Complexity: Systems and Biology at a Crossroads

Buy Article:

$79.00 plus tax (Refund Policy)


Gene therapy is a potentially promising new treatment for neurodegenerative disorders such as Alzheimer's disease (AD), which has been difficult to treat with conventional therapeutics. Viral vector-mediated somatic gene therapy is a rapidly developing methodology for providing never before achieved capability to deliver specific genes to the CNS in a highly localized and controlled manner. With the advent and refinements of this technology one focus is directed to which genes are the most appropriate to select for specific disease indications. Nerve growth factor (NGF), a potent survival factor for critical cell populations that degenerate in AD, has been chosen already for clinical gene therapy trials in human AD patients. Much knowledge about the pathophysiological underpinnings of AD is still lacking to make clear which patients may benefit from a gene therapy approach. Moreover, a detailed understanding of sustained NGF action in the normal and diseased CNS needs to be resolved before conclusions can be drawn regarding the utility of NGF gene therapy. Systematic efforts to acquire this new knowledge should compel clinically and biologically sophisticated efforts to advance gene therapy for neurodegenerative diseases.

Keywords: CNS; Gene therapy; Nerve growth factor; Neurodegenerative diseases

Document Type: Review Article


Affiliations: Center for Aging and Developmental Biology, Aab Institute of Biomedical Sciences, Department of Neurology, University of Rochester School of Medicine and Dentistry, Rochester NY 14642, USA

Publication date: 2006-03-01

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.
  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more