Skip to main content

Timing of Cord Blood Treatment After Experimental Stroke Determines Therapeutic Efficacy

Buy Article:

$79.00 plus tax (Refund Policy)

Abstract:

Embolic stroke is thought to cause irreparable damage in the brain immediately adjacent to the region of reduced blood perfusion. Therefore, much of the current research focuses on treatments such as anti-inflammatory, neuroprotective, and cell replacement strategies to minimize behavioral and physiological consequences. In the present study, intravenous delivery of human umbilical cord blood cells (HUCBC) 48 h after a middle cerebral artery occlusion (MCAo) in a rat resulted in both behavioral and physiological recovery. Nissl and TUNEL staining demonstrated that many of the neurons in the core were rescued, indicating that while both necrotic and apoptotic cell death occur in ischemia, it is clear that apoptosis plays a larger role than first anticipated. Further, immunohistochemical and histochemical analysis showed a diminished and/or lack of granulocyte and monocyte infiltration and astrocytic and microglial activation in the parenchyma in animals treated with HUCBC 48 h poststroke. Successful treatment at this time point should offer encouragement to clinicians that a therapy with a broader window of efficacy may soon be available to treat stroke.

Keywords: Human umbilical cord blood; Infarct core; Inflammation; Middle cerebral artery occlusion (MCAo); Therapeutic window

Document Type: Research Article

DOI: https://doi.org/10.3727/000000006783982043

Affiliations: 1: Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, FL 33612, USA, Department of Neurosurgery, University of South Florida College of Medicine, Tampa, FL 33612, USA 2: Department of Pharmacology and Molecular Therapeutics, University of South Florida College of Medicine, Tampa, FL 33612, USA 3: Saneron CCEL Therapeutics, Inc., Tampa, FL 33612, USA

Publication date: 2006-03-01

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more