Skip to main content

Synergistic Effect of Keratinocyte Transplantation and Epidermal Growth Factor Delivery on Epidermal Regeneration

Buy Article:

$79.00 plus tax (Refund Policy)


Both keratinocyte transplantation and epidermal growth factor (EGF) delivery stimulate epidermal regeneration. In this study, we hypothesized that the combined therapy of keratinocyte transplantation and EGF delivery accelerates epidermal regeneration compared to the single therapy of either keratinocyte transplantation or EGF delivery. To test this hypothesis, we utilized fibrin matrix as a keratinocyte/EGF delivery vehicle for epidermal regeneration. Full-thickness wounds were created on the dorsum of athymic mice, and human keratinocytes and EGF in fibrin matrix were sprayed onto the wounds to regenerate epidermal layers (group 1). As controls, human keratinocytes in fibrin matrix (group 2), EGF in fibrin matrix (group 3), or fibrin matrix alone (group 4) was sprayed onto the wounds. Spraying keratinocytes suspended in fibrin matrix did not affect the keratinocyte viability, as the cell viabilities before and after spraying were not different. EGF was released from fibrin matrix for 3 days. The wounds were analyzed with histology and immunohistochemistry at 1 and 3 weeks after treatments. Compared with the control groups, initial wound closure rate was highest in group 1. Histological analyses indicated that group 1 exhibited faster and better epidermal regeneration than the other groups. Immunohistochemical analyses showed that regenerated epithelium in groups 1 and 2 stained positively for human involucrin at 3 weeks, whereas the tissue sections of the groups 3 and 4 stained negatively. Human laminin was detected at the dermal–epidermal junction of the regenerated tissues in groups 1 and 2 at 3 weeks and was not detected in groups 3 and 4. The epidermal thickness of the regenerated tissues in group 1 was significantly thicker than that of the other groups at all time points. These results suggest that the combined therapy of keratinocyte transplantation and EGF delivery is more efficacious for epidermal regeneration than each separate therapy alone.

Keywords: Epidermal growth factor; Epidermal regeneration; Fibrin matrix; Keratinocyte

Document Type: Research Article


Affiliations: 1: Department of Chemical Engineering, Hanyang University, Seoul, Korea 2: Department of Chemical Engineering, Hanyang University, Seoul, Korea, Interdisciplinary Program for Biochemical Engineering and Biotechnology, Seoul National University, Seoul, Korea 3: Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea 4: Interdisciplinary Program for Biochemical Engineering and Biotechnology, Seoul National University, Seoul, Korea 5: Department of Bioengineering, Hanyang University, Seoul, Korea

Publication date: October 1, 2005

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more
Real Time Web Analytics