Skip to main content

Creatine Supplementation Improves Dopaminergic Cell Survival and Protects Against MPP+ Toxicity in an Organotypic Tissue Culture System

Buy Article:

$79.00 plus tax (Refund Policy)

Abstract:

Cell replacement therapy using mesencephalic precursor cells is an experimental approach for the treatment of Parkinson's disease (PD). A significant problem associated with this procedure is the poor survival of grafted neurons. Impaired energy metabolism is considered to contribute to neuronal cell death after transplantation. Creatine is a substrate for mitochondrial and cytosolic creatine kinases (CK) and buffers cellular ATP resources. Furthermore, elevated cellular creatine levels facilitate metabolic channeling and show antiapoptotic properties. Exogenous creatine supplementation therefore might offer a tool for improvement of dopaminergic neuron survival. The present study aimed at investigating the effects of creatine on cell survival of rat embryonic day 14 (E14) ventral mesencephalic neurons grown as organotypic free-floating roller tube (FFRT) cultures. We found that the brain-specific isoform of CK (BB-CK) and the ubiquitous mitochondrial isoform (uMt-CK) are expressed at high levels in FFRT cultures and colocalize with tyrosine hydroxylase immunoreactive (TH-ir) cells. Exposure of these cultures to creatine induced an increase in the content of the BB-CK isotype. Creatine (5 mM) administration starting at day in vitro (DIV) 7 resulted in a significant increase (+35%) in TH-ir cell density at DIV21. In addition, we observed that creatine treatment provided neuroprotection against 1-methyl-4-phenyl pyridinium ion (MPP+)-induced TH-ir cell loss in the FFRT culture system, resulting in a significantly higher density (+19%) of TH-ir neurons in creatine-treated cultures compared to corresponding controls. The decrease of TH-ir neurons in the MPP+-treated group corresponded with an increase in immunoreactivity for active caspase-3, an effect that was not seen in the group receiving creatine supplementation. In conclusion, our data imply that creatine administration is beneficial for the survival of TH-ir neurons encountering harmful conditions.

Keywords: Creatine; Free-floating roller tubes; MPP+; Parkinson's disease; Tyrosine hydroxylase; Ventral mesencephalic cell cultures

Document Type: Research Article

DOI: http://dx.doi.org/10.3727/000000005783982756

Affiliations: 1: Department of Neurosurgery, University Hospital, 3010 Berne, Switzerland 2: Institute of Cell Biology, Swiss Federal Institute of Technology (ETH), 8093 Zurich, Switzerland

Publication date: August 1, 2005

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.
cog/ct/2005/00000014/00000008/art00003
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more