Skip to main content

Effects of Cryopreservation on Cell Viability and Insulin Secretion in a Model Tissue-Engineered Pancreatic Substitute (TEPS)

Buy Article:

$79.00 plus tax (Refund Policy)


The use of encapsulated insulin-secreting cells constitutes a promising approach towards the treatment of insulin-dependent diabetes. However, long- term storage for off-the-shelf availability still remains an issue, which can be addressed by cryopreservation. This study investigated cryopreservation of a model tissue-engineered pancreatic substitute by two ice-free cryopreservation (vitrification) solutions (designated VS55 and PEG400) in comparison to a conventional freezing protocol. The model substitute consisted of insulin-secreting mouse insulinoma TC3 cells entrapped in calcium alginate/poly-L-lysine/alginate (APA) beads. Cell viability and static insulin secretion from the thawed cryopreserved groups were characterized and compared against fresh controls. Cell viability tests using alamarBlue® showed that, compared to the fresh groups, the VS55 had the highest viability (p < 0.05), followed by both the PEG400 (p < 0.001) and the frozen groups (p < 0.001). In response to a square wave of glucose, the static insulin secretion data showed that the VS55 and PEG400 groups had similar induction levels against the fresh group, whereas the frozen group had the poorest secretion rate. Cryosubstitution of capsules showed ice formation in the frozen group but no ice in the vitrified groups. Microscopic observations revealed holes and/or tears within beads subjected to freezing, whereas no such abnormalities were detected in the vitrified samples. Overall, vitrification was found to be a promising preservation procedure for this encapsulated cell system.

Keywords: Cell encapsulation; Cryopreservation; Pancreatic substitute; Vitrification; TC3 cells

Document Type: Research Article


Affiliations: 1: School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA, Georgia Tech/Emory Center for the Engineering of Living Tissues, Atlanta, GA 30332, USA 2: Organ Recovery Systems, Inc., Charleston, SC 29403, USA

Publication date: July 1, 2005

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Partial Open Access Content
Partial Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more