Skip to main content

Intrathecal Grafting of Porcine Chromaffin Cells Reduces Formalin-Evoked c-Fos Expression in the Rat Spinal Cord

The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.

Chromaffin cells from the adrenal gland secrete a combination of neuroactive compounds including catecholamines, opioid peptides, and growth factors that have strong analgesic effects, especially when administered intrathecally. Preclinical studies of intrathecal implantation with xenogeneic bovine chromaffin cells in rats have provided conflicting data with regard to analgesic effects, and recent concern over risk of prion transmission has precluded their use in human clinical trials. We previously developed a new, safer source of adult adrenal chromaffin cells of porcine origin and demonstrated an in vivo antinociceptive effect in the formalin test, a rodent model of tonic pain. The goal of the present study was to confirm porcine chromaffin cell analgesic effects at the molecular level by evaluating neural activity as reflected by spinal cord c-Fos protein expression. To this end, the expression of c-Fos in response to intraplantar formalin injection was evaluated in animals following intrathecal grafting of 106 porcine or bovine chromaffin cells. For the two species, adrenal chromaffin cells significantly reduced the tonic phases of the formalin response. Similarly, c-Fos-like immunoreactive neurons were markedly reduced in the dorsal horns of animals that had received injections of xenogeneic chromaffin cells. This reduction was observed in both the superficial (I–II) and deep (V–VI) lamina of the dorsal horn. The present study demonstrates that both xenogeneic porcine and bovine chromaffin cells transplanted into the spinal subarachnoid space of the rat can suppress formalin-evoked c-Fos expression equally, in parallel with suppression of nociceptive behaviors in the tonic phase of the test. These findings confirm previous reports that adrenal chromaffin cells may produce antinociception by inhibiting activation of nociceptive neurons in the spinal dorsal horn. Taken together these results support the concept that porcine chromaffin cells may offer an alternative xenogeneic cell source for transplants delivering pain-reducing neuroactive substances.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: Cell therapy; Intrathecal transplantation; Pain; Xenograft; c-Fos

Document Type: Research Article

Affiliations: 1: Laboratory of Pain and Cell Therapy, Rangueil Medical School, 133 route de Narbonne, 31062, Toulouse Cedex, France 2: Histology Department, Rangueil Medical School, 133 route de Narbonne, 31062, Toulouse Cedex, France 3: Department of Epidemiology, Medical School of Toulouse, 31073 Toulouse Cedex, France

Publication date: 2005-06-01

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.

    Cell Transplantation is now being published by SAGE. Please visit their website for the most recent issues.

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more