Skip to main content

Accelerated Functional Maturation of Isolated Neonatal Porcine Cell Clusters: In Vitro and In Vivo Results in NOD Mice

Buy Article:

$79.00 plus tax (Refund Policy)

Abstract:

Neonatal porcine cell clusters (NPCCs) might replace human for transplant in patients with type 1 diabetes mellitus (T1DM). However, these islets are not immediately functional, due to their incomplete maturation/differentiation. We then have addressed: 1) to assess whether in vitro coculture of islets with homologous Sertoli cells (SC) would shorten NPCCs' functional time lag, by accelerating the -cell biological maturation/differentiation; 2) to evaluate metabolic outcome of the SC preincubated, and microencapsulated NPCCs, upon graft into spontaneously diabetic NOD mice. The islets, isolated from <3 day piglets, were examined in terms of morphology/viability/function and final yield. SC effects on the islet maturation pathways, both in vitro and in vivo, upon microencapsulation in alginate/poly-L-ornithine, and intraperitoneal graft into spontaneously diabetic NOD mice were determined. Double fluorescence immunolabeling showed increase in -cell mass for SC+ neonatal porcine islets versus islets alone. In vitro insulin release in response to glucose, as well as mRNA insulin expression, were significantly higher for SC+ neonatal porcine islets compared with control, thereby confirming SC-induced increase in viable and functional -cell mass. Graft of microencapsulated SC+ neonatal porcine islets versus encapsulated islets alone resulted in significantly longer remission of hyperglycemia in NOD mice. We have preliminarily shown that the in vitro NPCCs' maturation time lag can dramatically be curtailed by coincubating these islets with SC. Graft of microencapsulated neonatal porcine islets, precultured in Sertoli cells, has been proven successful in correcting hyperglycemia in stringent animal model of spontaneous diabetes.

Keywords: Animal models; Diabetes; Immunity; Insulin; Therapy; Transplantation

Document Type: Review Article

DOI: http://dx.doi.org/10.3727/000000005783983034

Affiliations: 1: Department of Internal Medicine (Di.M.I.), Section of Internal Medicine and Endocrine and Metabolic Sciences, University of Perugia, Via E. Dal Pozzo, Perugia 06126, Italy 2: Department of Chemistry and Technology of the Drugs, Faculty of Pharmacy, University of Perugia, Via del Liceo 1, Perugia 06123, Italy 3: Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Via del Giochetto, Perugia 06123, Italy 4: Department of Morphology and Embryology, Section of Human Anatomy, University of Ferrara, Via Fossato di Mortara 66, Ferrara 44100, Italy

Publication date: May 1, 2005

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.
cog/ct/2005/00000014/00000005/art00002
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more