Skip to main content

A Comparison Between Real-Time Quantitative PCR and DNA Hybridization for Quantitation of Male DNA Following Myoblast Transplantation

Buy Article:

$79.00 plus tax (Refund Policy)


The transplantation of muscle precursor cells (myoblasts) is a potential therapy for Duchenne muscular dystrophy. A commonly used method to detect cell survival is quantitation of the Y chromosome following transplantation of male donor cells into female hosts. This article presents a direct comparison between real-time quantitative PCR (Q-PCR) and the DNA hybridization (slot-blot) technique for quantitation of Y chromosome DNA. Q-PCR has a significantly greater linear quantitation range and is up to 40-fold more sensitive at low concentrations of male DNA, detecting as little as 1 ng of male DNA in each female tibialis anterior (TA) muscle. At high male DNA concentrations, accurate quantitation by Q-PCR is 2.5 times higher than the maximum possible with slot-blot. In conclusion, Q-PCR has a higher dynamic range and is more efficient than slot-blot analysis for the detection of donor cell engraftment in a transsexual transplantation model.

Keywords: DNA hybridization; Male donor cell quantitation; Myoblast transplantation; Real-time quantitative PCR; Slot-blot

Document Type: Research Article


Affiliations: 1: *Discipline of Microbiology, School of Biomedical and Chemical Sciences, The University of Western Australia, Perth, W.A., 6009, Australia 2: †School of Anatomy and Human Biology, The University of Western Australia, Perth, W.A., 6009, Australia

Publication date: January 1, 2004

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more