Skip to main content

cDNA Microarray Analysis in Hepatocyte Differentiation in Huh 7 Cells

Buy Article:

$79.00 plus tax (Refund Policy)


The risk of xenozoonosis infections poses the greatest obstacle against the clinical application of a hybrid artificial liver support system (HALSS). Primary human hepatocytes are an ideal source for HALSS, but the shortage of human livers available for hepatocyte isolation limits this modality. To resolve this issue, we previously demonstrated the upregulation of hepatocyte-specific function by spheroid formation in polyurethane foam and by culturing with the histone deacetylase inhibitor, trichostatin A (TSA), in a human hepatoma cell line (Huh 7). In this article we analyze the gene expression profile using cDNA microarray (1281 genes) in spheroid formation or culturing with TSA in Huh 7 to determine the target genes in hepatocyte differentiation. In both the spheroid formation and in the culture with TSA, the Oct-3/4 transcription factor was upregulated more than twofold, while the early growth response-1 (EGR-1) transactivator was downregulated less than 0.5-fold. These results indicate that expressions of Oct-3/4 and EGR-1 may be key factors in the induction of hepatocyte differentiation in Huh 7.

Keywords: Hepatocyte differentiation; Hybrid artificial liver support system (HALSS); cDNA microarray

Document Type: Research Article


Affiliations: 1: *Department of Surgery and Science, Graduate School of Medical Sciences, Graduate School of Engineering, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan 2: †Department of Chemical Engineering, Graduate School of Engineering, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan

Publication date: January 1, 2004

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Partial Open Access Content
Partial Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more