Skip to main content

Cytotoxic Immune Response to a Xenogeneic Bioartificial Liver

Buy Article:

$79.00 plus tax (Refund Policy)


Prior studies have suggested the possibility of immune-mediated death of xenogeneic hepatocytes in a bioartificial liver (BAL) during hemoperfusion. This study was designed to elucidate how immunity may cause death of xenogeneic hepatocytes in the BAL. Healthy dogs were treated with a BAL containing hollow fiber membranes with large pores (200 nm) or small pores (400 kDa). The immune response of recipient dogs to BAL therapy was monitored over 3 h of treatment. We observed significantly greater loss of viability of hepatocytes in the 200 nm group compared with the 400 kDa group (p < 0.001). Low viability after treatment with the large pore membrane was associated with positive staining for dog IgG, dog IgM, and dog complement on dead hepatocytes. Significant levels of dog antibody were detected in samples of BAL medium from the 200 nm group. These canine antibodies were cytotoxic to porcine hepatocytes. In contrast, medium from the 400 kDa group contained only trace levels of dog IgG and were noncytotoxic. We conclude that antibody-mediated cytotoxicity contributed to the death of hepatocytes during treatment with a xenogeneic BAL. Immune-mediated death of hepatocytes was reduced by increasing selectivity of the BAL membrane.

Keywords: Bioartificial liver; Porcine hepatocyte; Xenoreactive antibody

Document Type: Research Article


Affiliations: Division of Solid Organ Transplantation, Division of Biochemistry and Molecular Biology, Transplantation Biology Program, Mayo Clinic, Rochester, MN 55905

Publication date: January 1, 2004

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more