Skip to main content

Evaluation of Surgical Techniques for Neuronal Cell Transplantation Used in Patients With Stroke

Buy Article:

$79.00 plus tax (Refund Policy)

Abstract:

Transplantation of cultured neuronal cells was performed in two human clinical trials after safety and efficacy was demonstrated in animal models of stroke. The studies tested the utility of human neuronal cellular transplantation into and around the small stroke volume. We developed a stereotactic surgical technique for cell delivery and evaluated that method in 26 patients with basal ganglia region motor stroke. Human neuronal cells (hNT cells; LBS neurons) were delivered frozen then thawed and formulated on the morning of surgery. Patients in a first trial received 2 or 6 million cells in three or nine implants, and in a second trial, 5 or 10 million in 25 implants. A novel cell delivery cannula was designed, manufactured, tested, and used in surgery. Immediate postoperative CT scans and later serial MR scans were used to evaluate the surgical site. Tests on the cell implantation cannula showed that the cells were not damaged and remained viable after injection. All patients underwent uncomplicated surgeries. Cells could be implanted within a 2-h period, maintaining viability of the preparation. Serial evaluations (maximum 5 years) showed no cell-related adverse serologic or imaging-defined effects. One patient had burr hole drainage of an asymptomatic chronic subdural hematoma. Human neuronal cells can be produced in culture and implanted stereotactically into the brains of patients with stroke. Surgical cell delivery did not lead to new neurological deficits, and imaging studies showed no adverse effects. The cannula used allowed precise injection of the clinical cell dose within a time period that maintained cell viability.

Keywords: Infarction; Neurons; Paralysis; Stereotactic surgery; Stroke; Transplantation

Document Type: Research Article

DOI: http://dx.doi.org/10.3727/000000004783983350

Affiliations: 1: Department of Neurological Surgery, University of Pittsburgh and the McGowan Institute for Regenerative Medicine, Pittsburgh, PA 2: †Department of Neurosurgery, Stanford University, Stanford, CA 3: ‡Layton BioScience, Inc., Sunnyvale, CA

Publication date: January 1, 2004

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.
cog/ct/2004/00000013/F0020007/art00004
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more