Skip to main content

Hypothermia Inhibits Fas-Mediated Apoptosis of Primary Mouse Hepatocytes in Culture

Buy Article:

$79.00 plus tax (Refund Policy)


Apoptosis occurs during the isolation and even short-term storage and culture of hepatocytes, and in the pathogenesis of liver diseases, such as hepatic failure and hepatitis. Therapeutic hypothermia has beneficial effects in experimental models of fulminant hepatic failure. The mechanisms underlying the potential benefits of mild hypothermia on the liver have not been well investigated. We examined the effects of temperature on soluble Fas ligand-induced apoptosis in freshly isolated mouse hepatocytes. Decreasing the culture temperature from 37°C to 32°C produced significant suppression of Fas-mediated apoptosis in cultured hepatocytes over a 12-h period. This observation was supported by cell morphology, flow cytometry analysis of cellular DNA content, and Annexin V-FITC staining of membrane phosphatidylserine translocation. In hypothermic conditions, Fas-mediated cytochrome c release from mitochondria of hepatocytes and the proximate downstream activation of caspase-9 were suppressed under mild hypothermic conditions. Effector caspase-7 activity was also inhibited at 32°C. In contrast, the activation of initiator caspase-8 and cleavage of Bid were not affected after Fas-ligand stimulation. These findings suggest that mild hypothermia suppresses Fas-mediated apoptosis of liver cells by the partial inhibition of signaling events including mitochondrial damage, cytochrome c release, and subsequent apoptosome formation and effector caspase activation.

Keywords: Apoptosis; Caspases; Fas protein; Hepatocyte; Hypothermia

Document Type: Research Article


Affiliations: *Department of Pediatrics, Northwestern University Feinberg School of Medicine and Children’s Memorial Institute for Education and Research, Chicago, IL 60611

Publication date: January 1, 2004

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more