Skip to main content

Comparison of Tolerated and Rejected Islet Grafts: A Gene Expression Study

Buy Article:

$79.00 plus tax (Refund Policy)


Recently we showed that donor-specific tolerance to MHC-matched islet allografts in diabetic NOD mice could be induced by simultaneous islet and bone marrow transplantation. Mononuclear cell infiltration surrounding the islets was also found in tolerated grafts. In this study, we compared gene expression in the tolerated and rejected islet grafts by using Affymetrix Murine U74A oligonucleotide arrays. To confirm the results of microarray analysis, we performed real-time PCR and RNase protection assay on selected genes. Of over 12,000 genes studied, 57 genes were expressed at consistently higher levels in tolerated islet grafts, and 524 genes in rejected islet grafts. Genes from a variety of functional clusters were found to be different between rejected and tolerated grafts. In the rejected islet grafts, a number of T-cell surface markers and of cytotoxicity-related genes were highly expressed. Also in the rejected grafts, a number of cytokines and chemokines and their receptors were highly expressed. The differential expression of selected genes found by microarray analysis was also confirmed by real-time PCR and RNase protection assay. Our results indicated that gene microarray analysis can help us to detect gene expression differences representative of the biologic mechanisms of tolerance and rejection.

Keywords: Gene expression; Graft-infiltrating lymphocytes; Islets; NOD mice; Rejection; Tolerance

Document Type: Research Article


Affiliations: 1: *Diabetes Institute for Immunology and Transplantation, University of Minnesota, Minneapolis, MN 2: †Department of Surgery, University of Minnesota, Minneapolis, MN

Publication date: January 1, 2004

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more