Skip to main content

Autologous Bone Marrow Stromal Cell Transplantation for Repair of Full-Thickness Articular Cartilage Defects in Human Patellae: Two Case Reports

The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.

This study assessed the effectiveness of autologous bone marrow stromal cell transplantation for the repair of full-thickness articular cartilage defects in the patellae of a 26-year-old female and a 44-year-old male. These two patients presented in our clinic because their knee pain prevented them from walking normally. After thorough examination, we concluded that the knee pain was due to the injured articular cartilage and decided to repair the defect with bone marrow stromal cell transplantation. Three weeks before transplantation, bone marrow was aspirated from the iliac crest of each patient. After erythrocytes had been removed by use of dextran, the remaining nucleated cells were placed in culture. When the attached cells reached subconfluence, they were passaged to expand in culture. Adherent cells were subsequently collected, embedded in a collagen gel, transplanted into the articular cartilage defect in the patellae, and covered with autologous periosteum. Six months after transplantation, clinical symptoms (pain and walking ability) had improved significantly and the improvement has remained in effect (5 years and 9 months posttransplantation in one case, and 4 years in the other), and both patients have been satisfied with the outcome. As early as 2 months after transplantation, the defects were covered with tissue that showed slight metachromatic staining. Two years after the first and 1 year after the second transplantation, arthroscopy was performed and the defects were repaired with fibrocartilage. Results indicate autologous bone marrow stromal cell transplantation is an effective approach in promoting the repair of articular cartilage defects.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Cartilage regeneration; Chondro-progenitor cell; Fibrocartilage; Resurfacing

Document Type: Research Article

Affiliations: 1: *Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto 390-8621, Japan 2: †Department of Orthopaedic Surgery, Osaka Rosai Hospital, Sakai 591-8025, Japan 3: ‡Department of Orthopaedic Surgery, Osaka University Medical School, Suita 565-0871, Japan

Publication date: 01 January 2004

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.

    Cell Transplantation is now being published by SAGE. Please visit their website for the most recent issues.

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more