Skip to main content

Variation in Human Islet Viability Based on Different Membrane Integrity Stains

The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.

Membrane integrity fluorescent staining is used routinely to evaluate islet viability. Results are used as one of the determining factors in islet product release criteria, and are used to assess the efficacy of different culture conditions. Recently, it has been observed that there is variation in the viability staining of freshly isolated islets based on which viability assay is used. This investigation compares three membrane integrity stains for the viability assessment of isolated human islets. Fluorescein diacetate/propidium iodide (FDA/PI), the current standard method for assessing islet viability, demonstrates intense extracellular fluorescence, reducing the differential staining of intact islets. We further evaluated SYTO-13/ethidium bromide (SYTO/EB) and calcein AM/ethidium homodimer (C/EthD) as alternative viability assays, and found considerable variation between FDA/PI and either SYTO/EB or C/EthD staining. Preparations of human islets were obtained from cadaveric pancreata after collagenase digestion, mechanical separation, and purification by continuous Ficoll gradient centrifugation. For each preparation, two replicate samples of 50 islets were counted for each stain, and the percent viability calculated. The results for SYTO/EB and C/EthD were nearly identical [57.6 ± 7.3% and 57.9 ± 7.2%, respectively (mean ± SEM), N = 11]. FDA/PI-stained islets, however, showed consistently elevated values when compared to SYTO/EB. Accurate assessment of islet viability remains a critical determinant of islet product release. The discrepancies found between FDA/PI scoring and visual quality, compared with alternative stains, suggests that the FDA/PI stain may not be the optimal approach to assess islet viability.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Fluorescein diacetate; Islets of Langerhans; SYTO-13; Transplantation; Viability

Document Type: Research Article

Affiliations: Clinical Islet Program, University of Alberta, Edmonton, Canada

Publication date: 2004-01-01

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.

    Cell Transplantation is now being published by SAGE. Please visit their website for the most recent issues.

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more