Skip to main content

Vigorous Neuronal Differentiation of Amplified and Grafted Basic Fibroblast Growth Factor-Responsive Neurospheres Derived From Neuroepithelial Stem Cells

The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.

Neuroepithelial stem cells (NESCs) have emerged as a possible donor material aimed at neural transplantation for the repair of damaged neural circuitry, particularly because of their propensity to differentiate into neurons. We previously ascertained in vitro that NESCs derived from rat early embryos could be amplified in culture containing basic fibroblast growth factors (bFGF), and that neurospheres grown for 7 days in the culture had a strong tendency to differentiate into neurons. In this report, we analyze immunohistochemically the biological nature of bFGF-responsive neurospheres derived from NESCs. We first succeeded in amplifying the number of NESCs from the mesencephalic neural plate of embryonic day 10 Wistar rats with the addition of bFGF. Grown neurospheres were labeled with bromodeoxyuridine (BrdU) in vitro and were stereotactically transplanted into the right striatum of the normal adult Wistar rat. Two weeks after transplantation, a viable graft in the host brain was observed. While many BrdU/Hu double positive cells were seen in the graft, and a few BrdU/nestin double positive cells were also seen, no BrdU/GFAP double positive cells could be identified. These results suggested that bFGF-responsive neurospheres derived from NESCs demonstrated a propensity to differentiate into neurons in the adult brain environment. Furthermore, following in vitro amplification of the original stem cell number with bFGF, the grown neurospheres preserved their propensity to differentiate vigorously into neurons. NESCs are thus suggested as a feasible candidate for intracerebral grafting donor materials aimed at reconstruction of damaged neural circuits.
No References
No Citations
No Supplementary Data
No Data/Media
No Metrics

Keywords: Neural transplantation; Neuroepithelial stem cell; Neuronal differentiation; ÈMesencephalic neural plate

Document Type: Research Article

Affiliations: Department of Neurosurgery, School of Medicine, Keio University, Shinanomachi 35, Shinjuku-ku, Tokyo 160-8582, Japan

Publication date: 2004-01-01

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.

    Cell Transplantation is now being published by SAGE. Please visit their website for the most recent issues.

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more