Skip to main content

Osteogenic Potential of Cultured Bone/Ceramic Construct: Comparison With Marrow Mesenchymal Cell/Ceramic Composite

Buy Article:

$79.00 plus tax (Refund Policy)


Osteogenesis occurs in porous hydroxyapatite (HA) when porous HA blocks combined with marrow mesenchymal cells are grafted in vivo. In vitro bone formation occurs in HA pores when HA combined with marrow cells is cultured in osteogenic medium containing dexamethasone. This cultured bone/HA construct possesses higher osteogenic ability when it is grafted in vivo. In the present study, we compared the osteogenic potential of a cultured bone/HA construct with that of a marrow mesenchymal cell/HA composite. Marrow cells were obtained from the femoral bone shaft of 7-week-old, male Fischer 344 rats and were cultured in T-75 flasks. Cells were concentrated, then frozen and stored in liquid nitrogen for 6 months. The cryopreserved cells were then thawed and prepared for subculture in porous HA (5 × 5 × 5 mm, Interpore 500) and for implantation with porous HA. After 2 weeks of subculture, three cultured bone/HA constructs were separately implanted in the right side of the back of each syngeneic 7-week-old male Fischer rat, and three thawed cell/HA composites (without subculture) were separately implanted in the left side. These implants were harvested at 2 or 4 weeks postimplantation, and prepared for histological, biochemical, and genetic analysis. Alkaline phosphatase activity and osteocalcin content of cultured bone/HA constructs were much higher than those of the cell/HA composites at 2 and 4 weeks postimplantation. Histological examination and gene expression data agreed with these findings. The culture technique discussed herein should facilitate the development of biosynthetic bone implants with higher osteogenic capacity.

Keywords: Dexamethasone; Hydroxyapatite; Marrow cell; Osteogenesis

Document Type: Research Article


Affiliations: 1: *Department of Orthopaedic Surgery, Nara Medical University, Kashihara City, Nara 634-8522, Japan 2: ‡Department of Public Health, Nara Medical University, Kashihara City, Nara 634-8522, Japan 3: †Department of Diagnostic Pathology, Nara Medical University, Kashihara City, Nara 634-8522, Japan

Publication date: 2004-01-01

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more