Skip to main content

Reassessment of Caspase Inhibition to Augment Grafted Dopamine Neuron Survival

The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.

One experimental therapy for Parkinson’s disease (PD) is the transplantation of embryonic ventral mesencephalic tissue. Unfortunately, up to 95% of grafted neurons die, many via apoptosis. Activated caspases play a key role in execution of the apoptotic pathway; therefore, exposure to caspase inhibitors may provide an effective intervention strategy for protection against apoptotic cell death. In the present study we examined the efficacy of two different caspase inhibitors, caspase-1 inhibitor Ac-YVAD-CMK and caspase-3 inhibitor Ac-DEVD-CMK, to augment mesencephalic tyrosine hydroxylase-immunoreactive (TH-ir) neuron survival in culture and following implantation into the denervated striatum of rats. We report that treatment with Ac-YVAD-CMK provided partial but nonsignificant protection for TH-ir neurons against serum withdrawal in mesencephalic cultures plated at low density, while neither caspase inhibitor promoted TH-ir neuron survival in higher density cultures, simulating graft density. We demonstrate that plating procedures (full well vs. microislands) and cell density directly affect the degree of insult experienced by TH-ir neurons following serum withdrawal. This varying degree of insult directly impacts whether caspase inhibition will augment TH-ir neuron survival. Our grafting experiments demonstrate that Ac-YVAD-CMK does not augment grafted TH-ir neuron survival when added to mesencephalic cell suspensions prior to grafting or to mesencephalic reaggregates for 3 days in vitro prior to transplantation. These experiments provide further evidence of the failure of these caspase inhibitors to augment TH-ir neuron survival. Furthermore, we suggest that cell culture paradigms used to model grafting paradigms must more closely approximate the cell densities of mesencephalic grafts to effectively screen potential augmentative treatments.
No References
No Citations
No Supplementary Data
No Data/Media
No Metrics

Keywords: Apoptosis; Cell density; Parkinson’s disease; Transplant

Document Type: Research Article

Affiliations: Department of Neurological Sciences, Research Center for Brain Repair, Rush University Medical Center, Chicago, IL 60612

Publication date: 2004-01-01

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.

    Cell Transplantation is now being published by SAGE. Please visit their website for the most recent issues.

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more