Skip to main content

Fate of a Chimeric Joint Construct in an Ectopic Site in SCID Mice

The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.

This study examines the use of a devitalized biological knee as a scaffold for repopulation with chondrocytes and tests the hypothesis that the devitalized scaffold would become repopulated with the foreign chondrocytes when placed in a suitable environment. Chimeric knee constructs were engineered in vitro and their ectopic in vivo fate was examined in SCID mice. The constructs were made by applying porous collagen sponges that contained viable bovine articular chondrocytes to shaved articular surfaces of devitalized embryonic chick knees. The chimeric joints were cultured for 1 week and were subsequently transplanted into dorsal subcutaneous pouches of 5-week-old mice. Specimens were prepared for histological analysis at 1, 3, 6, or 8 weeks after transplantation. Controls included empty collagen sponges, collagen sponges seeded with viable bovine chondrocytes, and devitalized chick knees without collagen sponge inserts. One week after in vitro incubation of the constructs, the porous collagen sponges with viable bovine chondrocytes were adherent to the shaved articular surfaces of the devitalized chick joints. There was abundant metachromatic neo-matrix around the chondrocytes in the collagen sponges. During maintenance of the constructs in vivo, the chimeric joints exhibited dramatic changes. Bovine chondrocytes proliferated in the collagen sponges and formed abundant new matrix. Bovine chondrocytes migrated into preexisting chick cartilage canals at 1 week. Subsequently, bovine chondrocytes invaded the matrix of the devitalized chick knees. Bovine neo-cartilage obliterated the interface between the collagen sponge and the devitalized chick cartilage. With time in vivo, the bovine neocartilage expanded and replaced the chick matrix. The devitalized cartilage appears to provide a framework for supporting chondrogenesis in a chimeric joint.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Bioengineering; In vivo; Joints; Knee

Document Type: Review Article

Affiliations: *Skeletal Biology Research Center, Massachusetts General Hospital

Publication date: 01 January 2004

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.

    Cell Transplantation is now being published by SAGE. Please visit their website for the most recent issues.

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more