Skip to main content

The Influence of Donor Age, Nerve Growth Factor, and Cografting With Drosophila Cells on Survival of Peripherally Grafted Embryonic or Fetal Rat Dorsal Root Ganglia

Buy Article:

$79.00 plus tax (Refund Policy)


Previous studies have shown that embryonic rat and human dorsal root ganglion (DRG) cells survive grafting to the cavity of extirpated adult rat DRG. Furthermore, grafted human embryonic neurons were shown to send axons peripherally and into the spinal cord, where they establish functional synaptic connections. This study analyzed the survival of orthotopically allografted rat DRG cells from embryonic stages 15 (E15) and 20 (E20), and the influence on their survival of nerve growth factor (NGF). NGF was delivered to the DRG transplants either by pump infusion or by cotransplantation of cells from Drosophila melanogaster, transgenic for human NGF. Lumbar DRGs of adult rats were removed and a collection of E15 or E20 DRGs placed in the cavity. One month after grafting the total number of DRG cells in the grafts was counted. Differentiation of subpopulations of DRG cells was estimated by counting cells immunostained for calcitonin gene-related peptide (CGRP), Griffonia simplicifolia agglutinin isolectin B4 (GSA), or heavy neurofilament protein (antibody RT97). The results show: i) similar survival of E15 and E20 grafts, with great variability in the survival of different subpopulations in E15 transplants, but a more consistent distribution of different phenotypes in E20 transplants; ii) infusion of NGF for 2 weeks increases the survival of E15 transplants, but has a negative effect on E20 transplants; iii) Drosophila cells transfected with human NGF gene survive peripheral xenografting and have a positive effect on the survival of the GSA- and CGRP-positive populations in E15 and E20 transplants; iv) Drosophila cells without the human NGF gene increase cell survival in E20 transplants. These data suggest that i) the effect of NGF is dependent on the embryonic stage of the transplants, ii) age-dependent sensitivity to NGF influences graft survival, and iii) transgenic Drosophila cells can be cotransplanted with embryonic neural tissue to the mammalian peripheral nervous system with a positive effect on the survival of neural grafts.

Keywords: Development; Lectin; Neuron survival; Neuropeptide; Neurotrophin

Document Type: Research Article


Affiliations: 1: *Institute of Gene Biology, Laboratory of Neurogenetics, Russian Academy of Sciences 2: †Department of Neuroscience, Neuroanatomy, Biomedical Center, Uppsala, Sweden

Publication date: 2002-12-01

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more