Skip to main content

Influence of VEGF on the Viability of Encapsulated Pancreatic Rat Islets After Transplantation in Diabetic Mice

Buy Article:

$79.00 plus tax (Refund Policy)

Abstract:

After pancreatic islet transplantation, insufficient blood supply is responsible for the loss of islet viability. The aim of our study was: 1) to determine the influence of vascular endothelial growth factor (VEGF) on the survival of encapsulated rat islets transplanted into healthy and diabetic mice and 2) to evaluate the metabolic efficiency of the VEGF-supplemented grafts. Twenty-four hours after culture, 50 rat islets immobilized into collagen in the presence of VEGF (100 ng/ml) and encapsulated (AN69 membrane, HOSPAL) were grafted in the peritoneal cavity of healthy or streptozotocin-induced diabetic mice (n = 6). Seven, 14, and 28 days after implantation, the encapsulation device and tissue surrounding the device were removed and the following parameters were analyzed: the number and the diameter of buds, the distance between devices and buds, the amount of cellular adhesion on the capsule surface, and the level of insulin secreted by encapsulated islet. For reversal of diabetes, 1000 rat islets encapsulated in the presence of VEGF were implanted in the peritoneal cavity of diabetic mice and fasting glycemia was analyzed. After 7 days of islet implantation in the absence of VEGF, the bud diameter was 16.1 ± 6.9 μm in diabetic mice and 34.4 ± 3.9 μm in healthy mice. However, the number of buds increased by a factor 2.5 in the presence of VEGF in both types of mice. Furthermore, when islets were transplanted in the presence of VEGF, the distance between the device and the buds was significantly decreased in both types of mice (p < 0.001) after 7, 14, and 28 days of islet implantation. Capsule analysis showed a decrease in cellular adhesion when the islets were encapsulated in the presence of VEGF. Insulin secretion of the islets was higher in the presence of VEGF compared with islets alone at all steps of the study. When 1000 rat islets were transplanted in the presence of VEGF, the glycemia level decreased to 6.2 ± 0.8 mmol/L after 3 days and remained stable until at least 28 days. In contrast, in the absence of VEGF, the initial decrease in the glucose level was rapidly followed by a relapse in hyperglycemia. In summary, VEGF increased the viability of engrafted encapsulated islets, increasing the duration of a normalized glycemia in diabetic mice following transplantation. Local adjunction of VEGF may therefore improve the clinical outcome of islet transplantation.

Keywords: Angiogenesis; Diabetes; Encapsulation; Islets; Transplantation; VEGF

Document Type: Research Article

DOI: https://doi.org/10.3727/000000003108747109

Affiliations: 1: *Centre européen d'étude du Diabète, Faculté de Médecine, 11, rue Humann, 67 000, Strasbourg, France 2: †Laboratoire d'Anatomie Pathologique, Hôpital de Hautepierre, 67 000 Strasbourg, France 3: ‡Transgène S.A., 11, rue de Molsheim, 67 000 Strasbourg, France 4: §Centre de Transfert et de Technologie du Mans, 20, rue Thalès de Milet, 72 000 Le Mans, France

Publication date: 2002-12-01

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more