Skip to main content

Basic Studies on the Clinical Applications of Platelet-Rich Plasma

The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.

Platelets, which contain many growth factors such as platelet-derived growth factor (PDGF) and transforming growth factor-β (TGF-β), are being used in clinical applications as platelet-rich plasma (PRP). Only a few studies, however, have been conducted on the growth factors present in PRP and on the clinical applications using the drug delivery system (DDS). For the purpose of clinical application, we first modified the PRP preparation method and assessed the amounts of growth factors contained in the human platelet concentrates. Furthermore, we assessed fibrin glue as a DDS of platelet concentrates. Platelet precipitations were made by twice centrifuging human whole blood. The precipitated platelet was resuspended to yield the platelet concentrates. The growth factor concentrations were measured. Fibrin glue sheets containing this platelet concentrate were implanted in rabbit pinna and samples were obtained for immunostaining (anti-PDGF antibody) to assess the use of PRP over time using the fibrin glue as the DDS. The mean concentration of growth factors present in the platelet concentrates was three times or greater than that of conventional PRP. Furthermore, the results indicated that when the platelet concentrate was used with fibrin glue as a carrier, the contents were released over a period of about 1 week. This raises the possibility that this system may be useful in clinical applications.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Drug delivery system; Fibrin glue; Platelet-rich plasma; Platlet-derived growth factor

Document Type: Research Article

Affiliations: 1: *Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, Shinanomachi 35, Shinjuku-ku, Tokyo, 160-8582, Japan 2: †Department of Pathology, Keio University School of Medicine, Shinanomachi 35, Shinjuku-ku, Tokyo, 160-8582, Japan 3: ‡Blood Center, Keio University School of Medicine, Shinanomachi 35, Shinjuku-ku, Tokyo, 160-8582, Japan

Publication date: 2003-01-01

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.

    Cell Transplantation is now being published by SAGE. Please visit their website for the most recent issues.

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more