Transplantation of Motoneuron-Enriched Neural Cells Derived From Mouse Embryonic Stem Cells Improves Motor Function of Hemiplegic Mice

$79.00 plus tax (Refund Policy)

Buy Article:

Abstract:

Embryonic stem (ES) cells are expected to be a potential donor source for neural transplantation. We have obtained motoneuron-enriched neural progenitor cells by culturing mouse ES cells with retinoic acid (RA). The cells also expressed mRNA of a neurotrophic factor, neurotrophin-3 (NT-3). The left motor cortex area of mice was damaged by cryogenic brain injury, and the neural cells were transplanted underneath the injured motor cortex, neighboring to the paraventricular region. We found that the cells expressing neuronal phenotypes not only remained close to the implantation site, but also exhibited substantial migration penetrating into the damaged lesion, in a seemingly directed manner up to cortical region. We found that some of the neural cells differentiated into Islet1-positive motoneurons. It seems likely that the ability of the ES cell-derived neural progenitor cells to respond in vivo to guidance cues and signals that can direct their migration and differentiation may contribute to functional recovery of the recipient mice. We found that an “island of the mature neuronal cells” of recipient origin emerged in the damaged motor cortex. This may be associated with the neuroprotective effects of the ES cell-derived neural cells. The ES cells differentiated into CD31+ vasculoendothelial cells with the RA treatment in vitro. Furthermore, the grafted cells may provide sufficient neurotrophic factors such as NT-3 for neuroprotection and regeneration. The grafted neural cells that migrated into residual cortex and differentiated into neurons had purposefully elongated axons that were stained with anti-neurofilament middle chain (NFM) antibody. Our study suggests that motoneurons can be induced from ES cells, and ES cells become virtually an unlimited source of cells for experimental and clinical neural cell transplantation.

Keywords: Embryonic stem cell; Endothelial cell; Motoneuron; Neural cell; Neural cell migration; Retinoic acid; Transplantation

Document Type: Research Article

DOI: http://dx.doi.org/10.3727/000000003108747019

Affiliations: 1: *Departments of Immunology and Medicine, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki 216-8511, Japan 2: †Department of Neurosurgery, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki 216-8511, Japan

Publication date: January 1, 2003

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more