If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Efficacy of a Larger Version of the Hybrid Artificial Liver Support System Using a Polyurethane Foam/Spheroid Packed-Bed Module in a Warm Ischemic Liver Failure Pig Model for Preclinical Experiments

$79.00 plus tax (Refund Policy)

Buy Article:

Abstract:

We have reported the usefulness of a polyurethane foam packed-bed culture system of hepatocyte spheroids as a hybrid artificial liver support system (PUF-HALSS). The aim of this study was to evaluate in detail the efficacy in serum parameters regarding the liver function of a larger version of the PUF-HALSS containing 2 × 1010 porcine hepatocytes for clinical use in warm ischemic liver failure pigs. Warm ischemic liver failure pigs weighing 25 kg were divided into two groups: (1) a control group (n = 3), in which each pig was attached to a PUF-HALSS without hepatocytes, and (2) a HALSS group (n = 3), in which each pig was attached to a PUF-HALSS. In the HALSS group, the increase of blood ammonia was completely suppressed and blood lactate levels were significantly suppressed. The Fisher’s ratio was better maintained, and the increase of total bile acid, glycochenodeoxycholic acid, and taurochenodeoxycholic acid was significantly suppressed in the HALSS group. Serum creatinine levels were significantly lower, and blood glucose levels were significantly higher in the HALSS group. Serum levels of tumor necrosis factor- α were not elevated in either group. In conclusion, the larger version of the PUF-HALSS demonstrated many advantages as a liver support system in warm ischemic liver failure pigs.

Keywords: Fulminant hepatic failure; Hybrid artificial liver support system; Polyurethane foam; Porcine hepatocytes; Spheroid

Document Type: Research Article

DOI: http://dx.doi.org/10.3727/000000003108746687

Affiliations: 1: *Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan 2: †Department of Chemical Engineering, Graduate School of Engineering, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan

Publication date: January 1, 2003

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more