Efficacy of a Polyurethane Foam/Spheroid Artificial Liver by Using Human Hepatoblastoma Cell Line (Hep G2)

$79.00 plus tax (Refund Policy)

Buy Article:

Abstract:

We investigated the availability of human hepatoblastoma cell line (Hep G2), compared with human primary hepatocytes (HH) and porcine primary hepatocytes (PH), as a cell source for the hybrid artificial liver support system (HALSS) by using polyurethane foam (PUF). All three kinds of hepatocytes spontaneously formed spherical multicellular aggregates (spheroids) of 100–200 μm diameter in the pores of PUF within 3 days of culture. In a PUF stationary culture, Hep G2 spheroids recovered the ammonia removal activity that was lost in monolayer culture, although the removal for each unit cell number was about one tenth that of HH spheroids and about one eighth of PH spheroids. The synthesis activities of albumin and fibrinogen of each unit cell number of Hep G2 were also upregulated by PUF spheroid culture, and were about twice as high as in monolayer culture. The albumin secretion activity of Hep G2 spheroids was almost the same as that of PH spheroids. HH scarcely secreted these proteins in this experiment, probably because they were cultured in a serum-free medium. In the PUF module in a circulation culture, HH had high ammonia removal and low synthesis activities similar to stationary culture. Hep G2 proliferated to a high cell density, such as about 4.8 × 107 cells/cm3-module at 10 days of culture. Although Hep G2 spheroids had low ammonia removal activity in each cell, the removal rate in the PUF module was almost the same as for PH at 7 days of culture because of the high cell density culture by cell proliferation. The albumin secretion rate by Hep G2 in the PUF module also increased with cell proliferation and was about 10 times higher than the initial rate for PH at 7 days of culture. These results suggest that Hep G2 is a potential cell source for the PUF-HALSS.

Keywords: Hep G2; Human primary hepatocytes; Hybrid artificial liver; Polyurethane foam; Porcine primary hepatocytes; Spheroids

Document Type: Research Article

DOI: http://dx.doi.org/10.3727/000000003783985151

Affiliations: 1: *Department of Chemical Engineering, Faculty of Engineering, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan 2: ‡Department of Chemical Processes and Environments, The University of Kitakyushu, Kitakyushu, Japan 3: †Department of Surgery and Science, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan

Publication date: January 1, 2003

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more