Skip to main content

Areal Density Measurement Is a Convenient Method for the Determination of Porcine Islet Equivalents Without Counting and Sizing Individual Islets

Buy Article:

$79.00 plus tax (Refund Policy)


The determination of islet mass is important for the normalization of islet experiments in the laboratory and for the precise dosing of islets for transplantation. The common microscopical analysis is based on individual islet sizing, calculation of the frequency distribution, and conversion into islet equivalents (IEQ), which is the volume of a spherical islet with a diameter of 150 μm. However, islets are of irregular form, which makes this determination user dependent, and the analysis is irreproducible once the original sample is discarded. This routine technique of islet quantification was compared with the analysis of areal density measurements. It was assumed that the entire area occupied by islets can be expressed in IEQ without sizing and counting individual islets. Porcine islets were isolated by continuous digestion/filtration and purified by gradient centrifugation. Purified islets were stained with dithizone and were repeatedly pictured under the microscope with random area selection. A total of 51 pictures was taken from 11 different purifications and stained islets were detected by digital image analysis. The correlation coefficient (r) between both analyses was 0.977 with an underestimation of islet yield by areal density detection (slope: 0.75 ± 0.03). Areal density analysis per picture took about 1 min, which is about 10 times faster than the traditional method without increasing the method error (CV 2.1% vs. 2.7%). In summary, areal density measurements allow a rapid and reproducible estimation of IEQ without counting individual islets. It can be performed in a single step analysis without computer programming and is valuable for online determinations of islet yield preceding transplantation.

Keywords: Area density; Bioartificial pancreas; Islet quantification; Islet transplantation; Porcine islets

Document Type: Research Article


Affiliations: 1: *Department of Pharmacology, Auf der Morgenstelle 8, University of Tübingen, 72076 Tübingen, Germany 2: †Department of General Surgery, Hoppe-Seyler Straße 3, University of Tübingen, 72076 Tübingen, Germany 3: ‡Institute of Textile and Process Engineering (ITV), Stuttgart-Denkendorf, 73770 Denkendorf, Germany

Publication date: January 1, 2003

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more