Skip to main content

Functional and Immunohistochemical Evaluation of Porcine Neonatal Islet-Like Cell Clusters

Buy Article:

$79.00 plus tax (Refund Policy)


Porcine neonatal islet-like cell clusters (NICCs) may be an attractive source of insulin-producing tissue for xenotransplantation in type I diabetic patients. We examined the functional and immunohistochemical outcome of the islet grafts in vitro during long-term culture and in vivo after transplantation to athymic nude mice. On average we obtained 29,000 NICCs from each pancreas. In a perifusion system, NICCs responded poorly to a glucose challenge alone, but 10 mmol/L arginine elicited a fourfold increase in insulin secretion and 16.7 mmol/L glucose + 10 mmol/L arginine caused a sevenfold increase in insulin secretion, indicating some sensitivity towards glucose. Hormone content as well as the number of hormone-containing cells increased for the first 14 days of culture. When NICCs were stained for hormones, proliferation (Ki67), and duct cells (CK7), some insulin- and glucagon-positive cells co-stained for proliferation. However no co-staining was observed between insulin- and glucagon-positive cells or between hormone- and CK7-positive cells. Following transplantation of 2000 NICCs under the renal capsule of diabetic nude mice, BG levels were normalized within an average of 13 weeks. Oral and IP glucose tolerance tests revealed a normal or even faster clearance of a glucose load compared with normal controls. Immunohistochemical examination of the grafts revealed primarily insulin-positive cells. In summary, in vitro, NICCs responded to a challenge including glucose and arginine. There was a potential for expansion of the β-cell mass of NICCs in vitro as well as in vivo where NICCs eventually may normalize blood glucose of diabetic mice.

Keywords: Islet transplantation; Islet-like cell clusters; Neonatal pigs; Perifusion; Xenotransplantation; β-Cell expansion

Document Type: Research Article


Affiliations: 1: *Department of Medical Endocrinology, Odense University Hospital, Denmark 2: †Department of Pathology, Odense University Hospital, Denmark 3: §Department of Medical Physiology, University of Copenhagen, Denmark 4: ‡Department of Clinical Biochemistry, Odense University Hospital, Denmark

Publication date: January 1, 2003

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more
Real Time Web Analytics