Skip to main content

Effects of Carboxypeptidase E Overexpression on Insulin mRNA Levels, Regulated Insulin Secretion, and Proinsulin Processing of Pituitary GH3 Cells Transfected With a Furin-Cleavable Human Proinsulin cDNA

The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.



We recently developed two rat pituitary GH3 cell clones engineered to secrete human insulin (InsGH3). InsGH3 cells convert proinsulin into mature insulin, which is partially stored into a readily releasable pool of secretory granules. The efficiency of these processes, however, is relatively low in these cells, either in vitro or in vivo. This study was aimed at determining whether carboxypeptidase E (Cpe) overexpression can increase proinsulin processing and regulated secretion by InsGH3 clones. Indeed, in its membrane-bound form Cpe works as sorting receptor for the regulated secretory pathway of many hormones while, in its soluble form, Cpe takes part to the late step of insulin maturation. We obtained two Cpe-overexpressing cell lines from two different InsGH3 clones (InsGH3/C1 and C7). In the Cpe-overexpressing cell lines, derived from InsGH3 of clone 1 (InsGH3/C1-HACpe), in which the membrane-bound form of exogenous Cpe is accounted for by 90% of total Cpe immunoreactivity, we observed an increase in proinsulin gene expression, and in basal and stimulated insulin secretion compared with the original clone. In contrast, in the Cpe-overexpressing cell line derived from InsGH3 of clone 7 (InsGH3/C7-HACpe), where the exogenous membrane-bound form was only 60% of total Cpe, we detected a decrease in basal insulin release and a modest, albeit significant, increase in intracellular proinsulin processing. In conclusion, Cpe overexpression can increase regulated insulin secretion and proinsulin processing in InsGH3 cells; however, such improvements appear quantitatively and qualitatively modest.
No References
No Citations
No Supplementary Data
No Data/Media
No Metrics

Keywords: Key words: Carboxypeptidase E; Insulin secretion;

Document Type: Research Article

Affiliations: 1: *Department of Medicine, San Raffaele Scientific Institute, Milan, Italy 2: †Unit for Metabolic Diseases, San Raffaele Scientific Institute, Milan, Italy

Publication date: 2002-01-01

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.

    Cell Transplantation is now being published by SAGE. Please visit their website for the most recent issues.

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more