Proliferative and Cytokine Responses in CTLA4-Ig-Treated Diabetic NOD Mice Transplanted With Microencapsulated Neonatal Porcine ICCs

$79.00 plus tax (Refund Policy)

Buy Article:

Abstract:



Our goal is to develop effective islet xenografts for treating human diabetes. We have studied microencapsulated neonatal porcine islet cell clusters (ICCs) transplanted intraperitoneally in spontaneously diabetic NOD mice, where they function to maintain normoglycemia in the autoimmune host. Nonencapsulated neonatal porcine ICCs functioned for 4.5 ± 0.5 days before being rejected; encapsulation prolonged graft function to 17 ± 2 days. CTLA4-Ig treatment did not enhance the survival of nonencapsulated ICCs. However, CTLA4-Ig treatment significantly extended the function of encapsulated ICCs to 73 ± 5 days. Histological analyses demonstrated a profuse pericapsular cellular reaction associated with rejection of encapsulated islet xenografts in untreated mice, while this reaction was significantly reduced in CTLA4-Ig-treated mice. To study mechanisms of xenograft rejection in this model, we analyzed proliferative responses to neonatal porcine ICCs and cytokines present in the peritoneal cavities of transplanted mice. Spleen cells from both CTLA4-Ig-treated and untreated rejecting NODs exhibited vigorous proliferation in the absence of antigenic stimulation, suggesting prior activation in vivo, while splenocytes from CTLA4-Ig-treated NODs with functioning grafts had low proliferative levels, equal to controls. Islet-specific proliferation was not detected in islet-rejecting mice, perhaps due to their high background levels. With the exception of elevated IL-6 levels, empty capsules did not provoke a significant peritoneal cytokine response compared with sham surgery or untransplanted control mice. However, IL-5, IL-12, TGF-β, and IL-1β were significantly elevated in NODs receiving encapsulated neonatal porcine ICCs compared with untransplanted controls. There were no significant differences between peritoneal cytokine concentrations in CTLA4-Ig-treated mice with long-term functioning grafts compared to mice that rejected grafts at earlier time points. We conclude that the combination of donor islet microencapsulation and brief treatment of the recipient with co-stimulatory blockade delays sensitization of the host, possibly by altering mechanism(s) for recruitment and/or activation of host effector cells.

Keywords: Key words: Diabetes; Xenograft; Porcine islet cell

Document Type: Research Article

DOI: http://dx.doi.org/10.3727/000000002783985413

Affiliations: 1: *Department of Surgery, Emory University School of Medicine, Atlanta, GA 30322 2: †Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA 30322

Publication date: January 1, 2002

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more