Skip to main content

Cultivation of Fetal Liver Cells in a Three-Dimensional Poly-L-Lactic Acid Scaffold in the Presence of Oncostatin M

The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.

To investigate the feasibility of fetal liver cells for liver tissue engineering, the supporting function of poly-L-lactic acid (PLLA) for fetal liver cells and the effects of oncostatin M (OSM) on hepatic differentiation were studied. After preparing three-dimensional biodegradable PLLA scaffold having a well-developed open-pore structure by a gas-forming method with ammonium chloride particles as a porogen and a gas-forming reagent, fetal liver cells separated from E14.5-C57BL/6CrSlc murine embryos were inoculated in the PLLA scaffolds. Cells were cultured in Williams' E medium with or without OSM (10 ng/ml) for 30 days with a medium change every 2 days. Results showed that there were significant increases in the number of cells and in albumin secretion in PLLA culture compared with in monolayer culture on day 15. In addition, a significant increase in albumin secretion was observed in OSM-added PLLA culture compared with OSM-free culture, and there was only a slightly enhanced albumin secretion in monolayer cultures with OSM. These results suggest that PLLA may enhance the biological activity of OSM for inducing maturation of fetal liver cells. Interestingly, the number of cells in PLLA culture with OSM decreased compared with OSM-free PLLA culture at day 15. This may be because promotion of hepatic development by OSM simultaneously suppressed in vitro hematopoiesis (i.e., blood cell production). In summary, our results indicate that the three-dimensional PLLA scaffold is a good support material for the cultivation of fetal liver cells and that OSM is capable of not only terminating hematopoiesis of the fetal liver but also stimulating the maturation of hepatic parenchymal cells in vitro.
No References
No Citations
No Supplementary Data
No Data/Media
No Metrics

Keywords: Fetal mou; Key words: Poly-L-lactic acid scaffolds

Document Type: Research Article

Affiliations: 1: †Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan 2: ‡Institute of Molecular and Cellular Bioscience, University of Tokyo, Bunkyoo-ku, Tokyo 113-0032, Japan 3: *Institute of Biological Engineering, Jilin University, 8 Xinmin Street, Changchun City, Jilin Province 130021, China

Publication date: 2002-05-01

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.

    Cell Transplantation is now being published by SAGE. Please visit their website for the most recent issues.

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more