Skip to main content

High Metabolic Function of Primary Human and Porcine Hepatocytes in a Polyurethane Foam/Spheroid Culture System in Plasma From Patients With Fulminant Hepatic Failure

The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.

It has been demonstrated that plasma from patients with fulminant hepatic failure (FHF) interferes extensively with cellular function. We placed primary human and primary porcine hepatocytes in a polyurethane foam (PUF)/spheroid culture system and compared the metabolic functions in the plasma of patients with FHF in a 24-h stationary culture to those in a monolayer culture. The PUF/spheroid culture system using primary human and primary porcine hepatocytes significantly decreased ammonia content during 28-day culture. Fisher's ratio significantly increased at culture days 3 and 7. Tauroursodeoxycholic acid significantly increased and glycochenodeoxycholic acid and taurochenodeoxycholic acid decreased in the FHF patients' plasma at culture day 3. During at least a 24-h culture in the FHF patients' plasma, metabolic functions of primary human and primary porcine hepatocytes were almost identical. The present results indicate that the PUF/spheroid culture system using primary human or primary porcine hepatocytes demonstrated more advantageous metabolic functions in the plasma from patients with FHF than the monolayer culture.
No References
No Citations
No Supplementary Data
No Data/Media
No Metrics

Keywords: Human hepatocytes; Key words: Fulminant hepatic failure; Polyurethane foam/spheroid culture system; Porcine hepatocytes

Document Type: Research Article

Affiliations: 1: *Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan 2: †Department of Engineering, Graduate School of Engineering, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan

Publication date: 2002-04-01

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.

    Cell Transplantation is now being published by SAGE. Please visit their website for the most recent issues.

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more