Skip to main content

T155g-Immortalized Kidney Cells Produce Growth Factors and Reduce Sequelae of Cerebral Ischemia

The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.

Fetal rat kidney cells produce high levels of glial-derived neurotrophic factor (GDNF) and exert neuroprotective effects when transplanted into the brain in animal models of Parkinson's disease and stroke. The purpose of the present experiment was to produce kidney cell lines that secrete GDNF. Genes encoding two truncated N-terminal fragments of SV40 large T antigen, T155g and T155c, which does not code for small t antigen, were used. T155g was transduced into E17 cultured fetal Sprague-Dawley rat kidney cortex cells using a plasmid vector, and T155c was transduced with a plasmid and a retroviral vector. Sixteen clones were isolated from cultures transfected with the T155g-expressing plasmid. No cell lines were obtained with T155c. Four clones produced GDNF at physiological concentrations ranging from 55 to 93 pg/ml of medium. These four clones were transplanted into the ischemic core or penumbra of rats that had undergone middle cerebral artery occlusion (MCAO). Three of the four clones reduced the volume of infarction and the behavioral abnormalities normally resulting from MCAO. Blocking experiments with antibodies to GDNF and platelet-derived growth factor (PDGF) suggested that these growth factors contributed only minimally to the reduction in infarct volume and behavioral abnormality. These cell lines may be useful for intracerebral transplantation in animal models of brain injury, stroke, or Parkinson's disease.
No References
No Citations
No Supplementary Data
No Data/Media
No Metrics

Keywords: Key words: Cell line; Neu; Stroke; Transplantation

Document Type: Research Article

Affiliations: Cellular Neurobiology Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 5500 Nathan Shock Drive, Baltimore, MD 21224

Publication date: 2002-03-01

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.

    Cell Transplantation is now being published by SAGE. Please visit their website for the most recent issues.

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more