Induction of Ectopic Bone Formation by Using Human Periosteal Cells in Combination With a Novel Scaffold Technology

$79.00 plus tax (Refund Policy)

Buy Article:

Abstract:

Due to their osteogenic germination potential, periosteum-derived osteoprogenitor cells are a potential source for tissue engineering a bone graft that could be used to regenerate skeletal defects. In this study we evaluated if ectopic bone formation could be induced by a construct made of human periosteal cells and a novel scaffold architecture whose mechanical properties are in the range of cancellous bone. Biopsies from human calvarial periosteum were harvested and cells were isolated from the inner cambial layer. Fifty thousand periosteal cells were seeded into the scaffolds measuring 6 × 6 × 2 mm. The cell–scaffold constructs were cultured for a period of 3 weeks prior to implantation into balb C nude mice. Mice were sacrificed and implants were analyzed 6 and 17 weeks postoperatively. Immunohistochemical analysis confirmed the osteoblastic phenotype of the seeded cells. Formation of focal adhesions and stress fibers could be observed in both scaffold architectures. Three-dimensional cell proliferation was observed after 2 weeks of culturing with centripetal growth pattern inside the pore network. The deposition of calcified extracellular matrix was observed after 3 weeks of culturing. In vivo, endochondral bone formation with osteoid production was detectable via von Kossa and Osteocalcin staining after 6 and 17 weeks. Histology and SEM revealed that the entire scaffold/bone grafts were penetrated by a vascular network. This study showed the potential of bone tissue engineering by using human periosteal cells in combination with a novel scaffold technology.

Keywords: Key words: Bone tissue engineering; Periosteal cel

Document Type: Research Article

DOI: http://dx.doi.org/10.0000/096020198389852

Affiliations: 1: #Department of Plastic Surgery, National University Hospital, 5 Lower Kent Ridge Road, Singapore 119074 2: ‡Department of Orthopaedic Surgery, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260 3: §Faculty of Medicine, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260 4: ¶Department of Mechanical Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260

Publication date: January 1, 2002

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more