Skip to main content

Newly Designed Compliant Hierarchic Hybrid Vascular Grafts Wrapped With a Microprocessed Elastomeric Film—I: Fabrication Procedure and Compliance Matching

The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.

The object of this study was to develop a compliant hybrid vascular graft minimally supported by an elastomeric scaffold for arterial replacement. The hybrid vascular grafts designed were composed of three layers: an inner surface lined with endothelial cells (ECs); a hybrid medial tissue composed of a collagenous gel embedded with smooth muscle cells (SMCs); and an outer layer made of a laser-processed micropored segmented polyurethane (SPU) film with the circular pore size (diameter 150 μm) but different film thickness (50–200 μm) and different pore-to-pore distances (1 or 4 mm). The approximate dimensions of the hybrid vascular graft without the SPU film were as follows: inner diameter, 5 mm; length, 5 cm; thickness, 50 μm. The intraluminal pressure–external diameter relationship was measured by infusion of a phosphate buffer solution into the hybrid vascular graft. Canine carotid arteries and commercially available ePTFE grafts served as controls. Decrease in the thickness of the SPU film and increase in the pore density of the SPU film increased the pressure-dependent distensibility of the hybrid vascular grafts. The thinner the film and higher the pore density, the more compliant was the hybrid graft. The pressure-induced distensibility of the designed hybrid graft was found to be close to that of native carotid arteries.
No References
No Citations
No Supplementary Data
No Data/Media
No Metrics

Keywords: Endothelial cell; Key words: Hybrid vascular graft

Document Type: Research Article

Affiliations: Department of Bioengineering, National Cardiovascular Center Research Institute, 5-7-1, Fujishiro-dai, Suita, Osaka 565-8565, Japan

Publication date: 2002-01-01

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.

    Cell Transplantation is now being published by SAGE. Please visit their website for the most recent issues.

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more