Skip to main content

Functional Comparison of the Single-Layer Agarose Microbeads and the Developed Three-Layer Agarose Microbeads as the Bioartificial Pancreas: An In Vitro Study

Buy Article:

$79.00 plus tax (Refund Policy)


In this study, the insulin secretory characteristics of the microencapsulated hamster islets were studied during long-term culture. The hamster islets were encapsulated as single-layer agarose microbeads or three-layer agarose microbeads with agarose and agarose containing poly(styrene sulfonic acid) (PSSa), respectively. The influence of PSSa on the function of the rat islets microencapsulted in three-layer microbeads was primarily monitored. The aim of this study was to examine the influence of the PSSa on the in vitro function of the islets encapsulated in the agarose/PSSa microbeads compared with single-layer agarose microbeads during long-term culture. The microbeads were cultured for 30 days in medium of Eagle's MEM at 37°C in 5% CO2 and 95% air. The basal insulin secretion into the culture medium was measured daily during the first 12 days and two times per week until 30 days. The microbeads were subjected to static incubation test on the 10th, 20th, and 30th day during culture. The basal insulin secretion level of the agarose/PSSa microbeads was significantly higher than that of single-layer agarose microbeads. The static incubation tests revealed a similar pattern of insulin secretion from both microbeads when they were exposed to high glucose challenge. In the static incubation test, both could significantly increase insulin release to more than 6.61 times (stimulation index) in response to high glucose stimulation and could significantly decrease when glucose concentration returned from high glucose to low glucose on the 10th, 20th, and 30th day of culture. This study demonstrated that the hamster islets enclosed in agarose/PSSa hydrogel not only continuously secreted basal amounts of insulin, but also maintained their response to high glucose stimulation similar to the agarose microbeads. The above results together with those of our previous in vivo study suggest that the three-layer microbeads (agarose/PSSa) are well suitable for xenotransplantation of islets for the clinical application.

Keywords: Agarose microbeads; Agarose/PSSa microbeads; Hamster islets; Key words: Biohybrid artificial pancreas

Document Type: Research Article


Affiliations: 1: *First Department of Surgery and Surgical Basic Science, Graduate School of Medicine, Kyoto University, Japan 2: †Institute for Frontier Medical Sciences, Kyoto University, Japan

Publication date: April 1, 2001

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Partial Open Access Content
Partial Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more