Skip to main content

Semiautomatic Macroencapsulation of Fresh or Cryopreserved Porcine Hepatocytes Maintain Their Ability for Treatment of Acute Liver Failure

The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.

We have previously demonstrated that fresh or cryopreserved xenogeneic hepatocytes manually macroencapsulated in AN69 polymer and transplanted intraperitoneally in rats were able to improve the survival rate after 95% hepatectomy without immunosuppression. In addition, we developed a semiautomatic device where porcine hepatocytes were coextruded with AN69 hydrogel in order to macroencapsulate large amounts of cells. The purpose of the present study was to 1) test whether transplanted porcine hepatocytes macroencapsulated in this device remained functional as evaluated by their ability to prevent death from acute liver failure, and 2) compare the efficiency of cryopreserved or freshly isolated hepatocytes. Fresh or cryopreserved porcine hepatocytes were macroencapsulated in the semiautomatic device by coextrusion in AN69 polymer in 2-m minitubes containing 6 × 107 cells. Acute liver failure was induced in rats by two-step 95% hepatectomy. At the time of completion of liver resection, rats were either not transplanted with minitubes (control group I, n = 13), or were implanted with two minitubes containing culture medium (control group II, n = 11), hepatocytes killed by heat treatment (control group III, n = 10), coextruded fresh hepatocytes (group IV, n = 11), or coextruded cryopreserved hepatocytes (group V, n = 11), without immunosuppression. The survival rate at day 7 was between 0% and 31% in the three control groups. By contrast, coextruded fresh hepatocytes significantly improved the survival rate (group IV, 82%) as did cryopreserved cells (group V, 91% survival). In surviving rats, minitubes were explanted after 20 days: either fresh or cryopreserved hepatocytes appeared morphologically viable and their ultrastructure was preserved. Their detoxification capacities evaluated by the activity of the cyt P450 CYP3A4 were partly maintained. In conclusion, porcine hepatocytes macroencapsulated by coextrusion using a semiautomatic device and transplanted without immunosuppression were able to prevent death from acute liver failure in rats. Cryopreserved cells were as efficient as fresh hepatocytes.
No References
No Citations
No Supplementary Data
No Data/Media
No Metrics

Keywords: Key words: Xenogeneic transplantation; Porcine hep

Document Type: Research Article

Affiliations: 1: †Department of Surgery, Hôpital Saint-Antoine, Paris, France 2: *Research Unit 402, INSERM, Paris, France 3: ‡Department of Pathology, Hôpital Saint-Antoine, Paris, France 4: §Department of Pharmacology, Hôpital Saint-Antoine, Paris, France 5: ¶Department of Surgery, Hôpital Ambroise Paré Boulogne-Billancourt, France

Publication date: 2001-01-01

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.

    Cell Transplantation is now being published by SAGE. Please visit their website for the most recent issues.

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more