If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Enhanced Survival of Porcine Neural Xenografts in Mice Lacking CD1d1, But No Effect of NK1.1 Depletion

$79.00 plus tax (Refund Policy)

Buy Article:

Abstract:

Transplantation of embryonic porcine neurons may restore neurological function in patients with Parkinson's disease, if immunological rejection could be prevented. This study was performed to investigate the role of natural killer cells (NK cells) and NK1.1+ T cells (NK T cells) in the rejection of neural xenografts. A cell suspension was prepared from the ventral mesencephalon of 26–27-day-old pig embryos, and 2 μl was implanted in the right striata of mutant CD1d1 null (CD1.1-/-) mice, NK1.1-depleted mice, and controls. The CD1.1-/- mice are deficient in NK T cells and the antigen-presenting molecule CD1d1. Graft survival and host responses were determined immunohistochemically using markers for dopamine neurons, CD4-, CD8- cells, microglia, and macrophages. At 2 weeks, the grafts were significantly larger in CD1.1-/- mice, 0.09 ± 0.02 μl (mean ± SEM), compared with controls, 0.05 ± 0.01 μl. There was no significant difference between NK1.1-depleted mice, 0.02 ± 0.01 μl, and controls. At 5 weeks, two grafts were still present in the CD1-/- mice, whereas only scars remained in the controls and in the NK1.1-depleted mice. Immune reactions were strong at 2 weeks and less pronounced at 5 weeks in all groups. Microglial activation was lower in NK-depleted mice than in the controls at 2 weeks. In contrast to organ xenografting, NK1.1+ cells do not seem to be important mediators of the rejection of discordant cellular neural xenografts. However, our results suggest that the antigen-presenting molecule CD1d1 may be involved in the rejection process.

Keywords: Key words: Xenotransplantation; NK cells; CD1; Parkinson's disease; Brain

Document Type: Research Article

DOI: http://dx.doi.org/10.3727/000000001783986765

Affiliations: 1: *Wallenberg Neuroscience Center, Lund University, Sölvegatan 17, S-223 62 Lund, Sweden 2: †Department of Clinical Immunology and Transfusion Medicine, Rudbeck Laboratory, Uppsala University, S-751 85 Uppsala, Sweden

Publication date: January 1, 2001

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more