Skip to main content

The Isolation and Function of Porcine Islets From Market Weight Pigs

The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.

The efficacy of clinical islet transplantation has been demonstrated with autografts, and although islet allografts have established insulin independence in a small number of IDDM patients, the treatment is confounded by the necessity of immunosuppression, the lack of donor tissue, and recurring islet immunogenicity. These limitations underscore a need to develop therapies to serve the large population of diabetic patients. Porcine islet xenotransplantation, together with a successful immune intervention strategy, may provide the necessary clinical alternative. However, a major obstacle in evaluating this approach has been the difficulty of obtaining adequate volumes of functional islet tissue from pigs. Donors of market weight are preferable to retired breeders due to their abundance, lower animal and husbandry costs, and are more suitable to meet regulatory guidelines for donor tissue for xenotransplantation. We describe a simple isolation procedure that following purification yields a mean of 350,000 IE, corresponding to 179 units of insulin and 1.8 mg of DNA with an islet purity and viability in excess of 85% (n = 317 isolations). In both short- and long-term cell cultures, porcine islets demonstrated glucose-responsive insulin secretion. However, this secretion is density dependent, which may have significant consequences in the development of immunoisolation technologies to support porcine islet xenotransplantation. Following implantation into diabetic nude mice, porcine islets remained functional in excess of 1 year. Implantation of a bioartificial pancreas containing porcine islets into pancreatectomized dogs provided significant clinical benefit with an improved diabetic condition. Finally, secretagogue-induced insulin release was demonstrated in vitro from these devices after removal from immunocompetent recipients. Immunohistochemical staining identified well-granulated islets following long-term implantation in both the rodent and canine models. This study demonstrates the ability to isolate porcine islets in clinically relevant numbers from market animals, which survive and remain functional for prolonged periods of time in an immune-deficient or immunoprotected environment.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Islet transplantation;; Key words: Porcine islets

Document Type: Research Article

Affiliations: Circe Biomedical Inc., 99 Hayden Ave, Lexington, MA 02421

Publication date: 2001-03-01

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.

    Cell Transplantation is now being published by SAGE. Please visit their website for the most recent issues.

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more