Skip to main content

Posttranscriptional Mechanisms of Glucocorticoid Antiproliferative Effects: Glucocorticoids Inhibit IL-6-Induced Proliferation of B9 Hybridoma Cells

The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.

Abstract:

Addition of rIL-6 to IL-6-dependent B9 cells starved for IL-6 for 16–20 h stimulated a vigorous proliferative response. Glucocorticoids (GCs), in a concentration-dependent manner, inhibited rIL-6-stimulated proliferation of B9 cells This inhibition was specific for the GCs, evident by the capacity of the GCs, dexamethasone, prednisolone, and hydrocortisone, but not non-GC steroids, to suppress rIL-6-dependent B9 cell proliferation. Furthermore, GC inhibition of IL-6-stimulated B9 cell proliferation was receptor mediated and was abrogated by the GC receptor antagonist, RU486. In addition to their reported effects on inhibition IL-6 expression, the results presented support the notion that GCs also acted distally by suppressing signal transduction through the IL-6 receptor.

Keywords: Dexamethasone; Glucocort; Key words: B9 Hybridomas

Document Type: Research Article

DOI: https://doi.org/10.3727/000000001783986927

Affiliations: 1: *Department of Laboratory Medicine, St. Georges-Orthodox Hospital, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon 2: †Department of Epidemiology and Biostatistics, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon

Publication date: 2001-02-01

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more