Open Access

Novel Positive-Charged Nanoparticles for Efficient Magnetic Resonance Imaging of Islet Transplantation

Authors: Oishi, Koichi; Noguchi, Hirofumi; Saito, Hiroaki; Yukawa, Hiroshi; Miyamoto, Yoshitaka; Ono, Kenji; Murase, Katsutoshi; Sawada, Makoto; Hayashi, Shuji

Source: Cell Medicine, Volume 3, Numbers 1-3, January 2012 , pp. 43-49(7)

Publisher: Cognizant Communication Corporation

Buy & download fulltext article:

Open Access The full text is Open Access.

View now:
HTML 42.2kb 
or
PDF 436.3kb 

Abstract:

Significant graft loss immediately after islet transplantation occurs due to immunological and nonimmunological events. Magnetic resonance imaging (MRI) is an attractive potential tool for monitoring islet mass in vivo. Although an efficient uptake of MRI contrast agent is required for islet cell labeling, commercially available magnetic nanoparticles are not efficiently transduced into cells. In this study, we developed six kinds of novel magnetic iron oxide nanoparticles, which are electrically charged by cationic end-group substitution of dextran. Each of the nanoparticles consisted of a small monocrystalline, superparamagnetic iron oxide core that is stabilized by a cross-linked aminated dextran coating to improve stability. We also used three different commercially available nanoparticles for controls. The labeling efficiency of the novel nanoparticles was evaluated, and the feasibility of the imaging by MRI was assessed. The positive-charged nanoparticles were transduced into a β-cell line, MIN6 cells, but not three commercially available nanoparticles. MRI showed a marked decrease in signal intensity on T1- and T2-weighted images at the site of the labeled cells in vitro. These data suggest that novel positive-charged nanoparticles could be useful MRI contrast agents to monitor islet mass after transplantation.
More about this publication?
  • The importance of translating original, peer-reviewed research and review articles on the subject of cell therapy and its application to human diseases to society has led to the formation of the journal Cell Medicine. To ensure high-quality contributions from all areas of transplantation, the same rigorous peer review will be applied to articles published in Cell Medicine. Articles may deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, and stem cells, among others. Basic clinical studies and immunological research papers may also be featured if they have a translational interest. To provide complete coverage of this revolutionary field, Cell Medicine will report on relevant technological advances and their potential for translational medicine. Cell Medicine will be a purely online Open Access journal. There will therefore be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow your work to be disseminated to a wider audience and also entitle you to a free PDF, as well as prepublication of an unedited version of your manuscript.

Tools

Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content

Text size:

A | A | A | A
Share this item with others: These icons link to social bookmarking sites where readers can share and discover new web pages. print icon Print this page