Skip to main content

Open Access Construction of Artificial Hepatic Lobule-Like Spheroids on a Three-Dimensional Culture Device

Download Article:
 Download
(HTML 32.3818359375 kb)
 
or
 Download
(PDF 542.1142578125 kb)
 

Abstract:

One major purpose of cell culture is the reconstruction of physiological structures. Using bovine aortic epithelium cell line HH (JCRB0099) as feeder cells and rat primary hepatocytes, we constructed hepatic lobule-like spheroids on a cell array plate designed for three-dimensional (3D) culture. Microfabricated patterning of the cell array with poly(ethyleneglycol) brushes promotes the formation of spheroids at 100-μm diameter at 100-μm intervals. Our standard protocol is to seed with feeder HH cells and then seed with primary hepatic parenchymal cells. The composite cell spheroids thus obtained are called heterospheroids. Feeder cells that were attached to the plate migrated and encompassed the spheroidal hepatocyte mass. Electron microscopy revealed Disse space-like structures characterized by hepatocyte-rooted microvilli rooted between hepatocyte and feeder epithelial HH cells. Differentiated hepatic functions such as albumin synthesis and cytochrome P450 subfamily CYP3A activities were maintained for 28 days in the heterospheroid versus monospheroid and monolayer cultures. In addition, glucuronide conjugation activity was maintained at a high level in heterospheroids. These results indicate that structurally similar hepatic lobules were formed in a microfabricated cell array coculture system and that the culture conditions are beneficial for maintaining differentiated hepatic functions.

Keywords: Artificial hepatic lobules; Hepatic function; Three-dimensional culture

Document Type: Research Article

DOI: https://doi.org/10.3727/215517912X639478

Publication date: 2012-01-01

More about this publication?
  • The importance of translating original, peer-reviewed research and review articles on the subject of cell therapy and its application to human diseases to society has led to the formation of the journal Cell Medicine. To ensure high-quality contributions from all areas of transplantation, the same rigorous peer review will be applied to articles published in Cell Medicine. Articles may deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, and stem cells, among others. Basic clinical studies and immunological research papers may also be featured if they have a translational interest. To provide complete coverage of this revolutionary field, Cell Medicine will report on relevant technological advances and their potential for translational medicine. Cell Medicine will be a purely online Open Access journal. There will therefore be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow your work to be disseminated to a wider audience and also entitle you to a free PDF, as well as prepublication of an unedited version of your manuscript.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more