Skip to main content

Open Access Resident Endothelial Progenitor Cells From Human Placenta Have Greater Vasculogenic Potential Than Circulating Endothelial Progenitor Cells From Umbilical Cord Blood

Download Article:
(HTML 71.115234375 kb)
(PDF 12347.716796875 kb)
Endothelial colony-forming cells (ECFCs) isolated from umbilical cord blood (CBECFCs) are highly proliferative and form blood vessels in vivo. The purpose of this investigation was to isolate and characterize a population of resident ECFCs from the chorionic villi of term human placenta and provide a comparative analysis of their proliferative and vasculogenic potential with CBECFCs. ECFCs were isolated from umbilical cord blood and chorionic villi from placentas obtained by caesarean deliveries. Placental ECFCs (PECFCs) expressed CD144, CD31, CD105, and KDR and were negative for CD45 and CD34, consistent with other ECFC phenotypes. PECFCs were capable of 28.6 ± 6.0 population doublings before reaching senescence (vs. 47.4 ± 3.2 for CBECFCs, p < 0.05, n = 4). In single cell assays, 46.5 ± 1.2% underwent at least one division (vs. 51.0 ± 1.8% of CBECFCs, p = 0.07, n = 6), and of those dividing PECFCs, 71.8 ± 0.9% gave rise to colonies of >500 cells (highly proliferative potential clones) over 14 days (vs. 69.4 ± 0.7% of CBECFCs, p = 0.07, n = 9). PECFCs formed 5.2 ± 0.8 vessels/mm2 in collagen/fibronectin plugs implanted into nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice, whereas CBECFCs formed only 1.7 ± 1.0 vessels/mm2 (p < 0.05, n = 4). This study demonstrates that circulating CBECFCs and resident PECFCs are identical phenotypically and contain equivalent quantities of high proliferative potential clones. However, PECFCs formed significantly more blood vessels in vivo than CBECFCs, indicating that differences in vasculogenic potential between circulating and resident ECFCs exist.

45 References.

No Supplementary Data.
No Article Media
No Metrics

Keywords: Endothelial progenitor cells; Placenta; Pluripotent stem cells; Vascular endothelial cells; Vasculogenesis

Document Type: Research Article

Publication date: 2012-01-01

More about this publication?
  • The importance of translating original, peer-reviewed research and review articles on the subject of cell therapy and its application to human diseases to society has led to the formation of the journal Cell Medicine. To ensure high-quality contributions from all areas of transplantation, the same rigorous peer review will be applied to articles published in Cell Medicine. Articles may deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, and stem cells, among others. Basic clinical studies and immunological research papers may also be featured if they have a translational interest. To provide complete coverage of this revolutionary field, Cell Medicine will report on relevant technological advances and their potential for translational medicine. Cell Medicine will be a purely online Open Access journal. There will therefore be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow your work to be disseminated to a wider audience and also entitle you to a free PDF, as well as prepublication of an unedited version of your manuscript.

    Cell Medicine is now being published by SAGE. Please visit their website for the most recent issues.

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more