Skip to main content

Open Access Neuroprotective and Angiogenic Effects of Bone Marrow Transplantation Combined With Granulocyte Colony-Stimulating Factor in a Mouse Model of Amyotrophic Lateral Sclerosis

Download Article:
(HTML 86.8076171875 kb)
(PDF 8021.6962890625 kb)
Bone marrow (BM) cells from amyotrophic lateral sclerosis (ALS) patients show significantly reduced expression of several neurotrophic factors. Monotherapy with either wild-type (WT) BM transplantation (BMT) or granulocyte colony-stimulating factor (GCSF) has only a small clinical therapeutic effect in an ALS mouse model, due to the phenomenon of neuroprotection. In this study, we investigated the clinical benefits of combination therapy using BMT with WT BM cells, plus GCSF after disease onset in ALS mice [transgenic mice expressing human Cu/Zn superoxide dismutase (SOD1) bearing a G93A mutation]. Combined treatment with BMT and GCSF delayed disease progression and prolonged the survival of G93A mice, whereas BMT or GCSF treatment alone did not. Histological study of the ventral horns of lumbar cords from G93A mice treated with BMT and GCSF showed a reduction in motor neuron loss coupled with induced neuronal precursor cell proliferation, increased expression of neurotrophic factors (glial cell line-derived neurotrophic factor, brain-derived neurotrophic factor, vascular endothelial growth factor and angiogenin), and neovascularization compared with controls (vehicle only). Compared with G93A microglial cells, most BM-derived WT cells differentiated into microglial cells and strongly expressed neurotrophic factors, combined BMT and GCSF treatment led to the replacement of G93A microglial cells with BM-derived WT cells. These results indicate combined treatment with BMT and GCSF has potential neuroprotective and angiogenic effects in ALS mice, induced by the replacement of G93A microglial cells with BM-derived WT cells. Furthermore, this is the first report showing the effects of combined BMT and GCSF treatment on blood vessels in ALS.

57 References.

No Supplementary Data.
No Article Media
No Metrics

Keywords: Amyotrophic lateral sclerosis (ALS); Bone marrow; Granulocyte colony-stimulating factor (GCSF); Spinal cord; Superoxide dismutase (SOD1)

Document Type: Research Article

Publication date: 2011-02-01

More about this publication?
  • The importance of translating original, peer-reviewed research and review articles on the subject of cell therapy and its application to human diseases to society has led to the formation of the journal Cell Medicine. To ensure high-quality contributions from all areas of transplantation, the same rigorous peer review will be applied to articles published in Cell Medicine. Articles may deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, and stem cells, among others. Basic clinical studies and immunological research papers may also be featured if they have a translational interest. To provide complete coverage of this revolutionary field, Cell Medicine will report on relevant technological advances and their potential for translational medicine. Cell Medicine will be a purely online Open Access journal. There will therefore be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow your work to be disseminated to a wider audience and also entitle you to a free PDF, as well as prepublication of an unedited version of your manuscript.

    Cell Medicine is now being published by SAGE. Please visit their website for the most recent issues.

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more